
1.1

1.2

1.3

1.3.1

1.4

1.4.1

1.4.2

1.5

1.5.1

1.5.2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

Table	of	Contents
Introduction

Why	Map?

Getting	Started

Usage

Mappings	via	XML

via	Annotations

via	API

Configuration

Configuration	via	XML

Configuration	via	API

Dozer	mapping	concepts
Mapping	Classes

Basic	Property	Mapping

Inheritance	Mapping

Context	Based	Mapping

One-Way	Mapping

Copying	By	Object	Reference

Deep	Property	Mapping

Indexed	Property	Mapping

Excluding	Fields

Assembler	Pattern

Mapping	immutable	types

How	do	i	map	a	type	of…​?
Enums

String	to	Date

Collections	and	Arrays

Map	Backed	Property	Mapping

Proxy	Objects

What	if	i	need	to	customise	the	mapping?
Custom	Converters

Custom	Bean	Factories

Custom	Create	Methods

1

4.4

4.5

5.1

5.2

5.3

6.1

6.2

6.3

7.1

7.2

8.1

8.2

8.3

8.4

9.1

9.2

9.3

10.1

10.2

10.2.1

10.2.2

Custom	get()	set()	Methods

Expression	Language

Extra
Logging

Event	Listening

Metadata	Query	Interface

3rd	Party
Spring	Integration

Spring	Boot	Integration

JAXB

Other
FAQ

Examples

Migration
v5	to	v6

v6.0.0	to	v6.1.0

v6.1.0	to	v6.2.0

v6.2.0	to	v6.3.0

Schema
Mapping	XSD

Spring4	XSD

User’s	Guide	PDF

Eclipse	Plugin
Installation

Usage

via	XML

via	Editor

2

https://dozermapper.github.io/schema/bean-mapping.xsd
https://dozermapper.github.io/schema/dozer-spring.xsd
https://dozermapper.github.io/user-guide.pdf

3

Dozer

What	is	Dozer?
Dozer	is	a	Java	Bean	to	Java	Bean	mapper	that	recursively	copies	data	from	one	object	to	another.	Typically,	these
Java	Beans	will	be	of	different	complex	types.

Dozer	supports	simple	property	mapping,	complex	type	mapping,	bi-directional	mapping,	implicit-explicit	mapping,	as
well	as	recursive	mapping.	This	includes	mapping	collection	attributes	that	also	need	mmapping	at	the	element	level.

Please	read	the	about	page	for	detailed	information	on	Dozer.

Introduction

4

Why	Map?
A	mapping	framework	is	useful	in	a	layered	architecture	where	you	are	creating	layers	of	abstraction	by	encapsulating
changes	to	particular	data	objects	vs.	propagating	these	objects	to	other	layers	(i.e.	external	service	data	objects,
domain	objects,	data	transfer	objects,	internal	service	data	objects).	A	mapping	framework	is	ideal	for	using	within
Mapper	type	classes	that	are	responsible	for	mapping	data	from	one	data	object	to	another.

For	distributed	systems,	a	side	effect	is	the	passing	of	domain	objects	between	different	systems.	Typically,	you	won’t
want	internal	domain	objects	exposed	externally	and	won’t	allow	for	external	domain	objects	to	bleed	into	your
system.

Mapping	between	data	objects	has	been	traditionally	addressed	by	hand	coding	value	object	assemblers	(or
converters)	that	copy	data	between	the	objects.	Most	programmers	will	develop	some	sort	of	custom	mapping
framework	and	spend	countless	hours	and	thousands	of	lines	of	code	mapping	to	and	from	their	different	data	object.

A	generic	mapping	framework	solves	these	problems.	Dozer	is	an	open	source	mapping	framework	that	is	robust,
generic,	flexible,	reusable,	and	configurable.

Data	object	mapping	is	an	important	part	of	layered	service	oriented	architectures.	Pick	and	choose	the	layers	you
use	mapping	carefully.	Do	not	go	overboard	as	there	is	maintenance	and	performance	costs	associated	with	mapping
data	objects	between	layers.

Parallel	Object	Hierarchies

There	could	be	different	reasons	of	why	application	should	support	parallel	object	hierarhchies.	To	name	a	few:

Integration	with	External	Code

Serialization	Requirements

Framework	Integration

Separation	of	Architectural	Layers

In	some	cases	it	is	efficient	to	guard	your	code	base	from	frequently	changing	object	hierarchy,	which	you	do	not
control	directly.	In	this	case	Dozer	serves	as	a	bridge	between	application	and	external	objects.	As	mapping	is
performed	in	reflective	manner	not	all	changes	break	your	API.	For	example	if	object	changes	from	Number	to	String
the	code	will	keep	working	as	this	is	resolved	automatically.

Some	frameworks	impose	Serialization	constraints,	which	does	not	allow	sending	any	Java	objects	through	the	wire.
One	of	the	popular	examples	is	Google	Web	Toolkit	(GWT)	framework,	which	restricts	developer	to	sending	only
objects	compiled	to	JavaScript	and	marked	as	Serializable.	Dozer	helps	to	convert	Rich	Domain	Model	to
Presentation	Model,	which	satisfies	GWT	serialization	requirements.

Dozer	integrates	nicely	with	frameworks	use	JAXB	implementations.	With	help	of	provided	factory	classes,	conversion
between	domain	model	and	Xml	objects	is	defined	in	the	same	way	as	plain	object	to	object	mappings.

In	complex	enterprise	application	it	is	often	valuable	to	separate	design	to	several	architectural	layers.	Each	of	them
would	reside	on	its	own	abstraction	level.	A	typical	simplified	example	would	be	presentation,	domain	and	persistence
layers.	Each	of	this	layers	could	have	own	set	of	Java	Beans	representing	data	relevant	for	this	layer.	It	is	not
necessary	that	all	data	will	travel	to	the	upper	levels	of	architecture.	For	example	the	same	domain	object	could	have
different	mappings	dependant	of	the	presentation	layer	requirements.

Why	Map?

5

Why	Map?

6

Getting	Started

Downloading	the	Distribution

If	you	are	using	Apache	Maven,	simply	copy-paste	this	dependency	to	your	project.

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-core</artifactId>
				<version>6.4.0</version>
</dependency>

1st	Mapping

For	your	first	mapping,	lets	assume	that	the	two	data	objects	share	all	common	attribute	names.

Mapper	mapper	=	DozerBeanMapperBuilder.buildDefault();
DestinationObject	destObject	=	mapper.map(sourceObject,	DestinationObject.class);

After	performing	the	Dozer	mapping,	the	result	will	be	a	new	instance	of	the	destination	object	that	contains	values	for
all	fields	that	have	the	same	field	name	as	the	source	object.	If	any	of	the	mapped	attributes	are	of	different	data
types,	the	Dozer	mapping	engine	will	automatically	perform	data	type	conversion.	At	this	point	you	have	completed
your	first	Dozer	mapping.	Later	sections	will	go	over	how	to	specify	custom	mappings	via	custom	xml	files.

IMPORTANT:	For	real-world	applications	it	is	NOT	recommended	to	create	a	new	instance	of	the	Mapper	each	time
you	map	objects	but	reuse	created	instance	instead.

Specifying	Custom	Mappings	via	XML

If	the	two	different	types	of	data	objects	that	you	are	mapping	contain	any	fields	that	don’t	share	a	common	property
name,	you	will	need	to	add	a	class	mapping	entry	to	your	custom	mapping	xml	file.	These	mappings	xml	files	are	used
at	runtime	by	the	Dozer	mapping	engine.

Dozer	automatically	performs	any	type	conversion	when	copying	the	source	field	data	to	the	destination	field.	The
Dozer	mapping	engine	is	bi-directional,	so	if	you	wanted	to	map	the	destination	object	to	the	source	object,	you	do	not
need	to	add	another	class	mapping	to	the	xml	file.

IMPORTANT:	Fields	that	are	of	the	same	name	do	not	need	to	be	specified	in	the	mapping	xml	file.	Dozer
automatically	maps	all	fields	with	the	same	property	name	from	the	source	object	into	the	destination	object.

i.e.:

<mapping>
				<class-a>yourpackage.yourSourceClassName</class-a>
				<class-b>yourpackage.yourDestinationClassName</class-b>
				<field>
								<a>yourSourceFieldName
								yourDestinationFieldName
				</field>
</mapping>

The	complete	Dozer	mapping	xml	file	would	look	like	the	following.	The	Custom	Mappings	section	contains	more
information	on	mapping	options	that	are	available	to	you	for	more	complex	use	cases.

Getting	Started

7

https://maven.apache.org/

<?xml	version="1.0"	encoding="UTF-8"?>
<mappings	xmlns="http://dozermapper.github.io/schema/bean-mapping"
										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
										xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping	http://dozermapper.github.io/schema/bean-ma
pping.xsd">
				<configuration>
								<stop-on-errors>true</stop-on-errors>
								<date-format>MM/dd/yyyy	HH:mm</date-format>
								<wildcard>true</wildcard>
				</configuration>
				<mapping>
								<class-a>yourpackage.yourSourceClassName</class-a>
								<class-b>yourpackage.yourDestinationClassName</class-b>
								<field>
												<A>yourSourceFieldName
												yourDestinationFieldName
								</field>
				</mapping>
</mappings>

Dozer	and	Dependency	Injection	Frameworks

Dozer	is	not	dependant	of	any	existing	Dependency	Injection	framework	(DI).	However	the	general	aim	is	to	support
the	most	typical	use	cases	with	ready-to-use	wrappers.	Check	Spring	Integration	manual	for	option	of	initializing
Dozer	in	context	of	Spring	DI	framework.

Getting	Started

8

https://en.wikipedia.org/wiki/Dependency_injection

Usage

Dozer	Bean	Mapper

Before	we	go	over	setting	up	custom	xml	bean	mappings,	let	us	look	at	a	simple	example	of	using	Dozer.	The	Dozer
mapping	implementation	has	a	method	called	map	which	takes	a	source	object	and	either	a	destination	object	or
destination	object	class	type.	After	mapping	the	two	objects	it	then	returns	the	destination	object	with	all	of	its	mapped
fields.

Mapper	mapper	=	DozerBeanMapperBuilder.buildDefault();
DestinationObject	destObject	=	mapper.map(sourceObject,	DestinationObject.class);

Or…​

DestinationObject	destObject	=	new	DestinationObject();
mapper.map(sourceObject,	destObject);

Dozer	operates	in	two	general	modes:	implicit	and	explicit.

Implicit	mode	is	activated	by	default	and	tries	to	resolve	mappings	for	you.	It	uses	simple	assumptions	that	if	two
objects	are	passed	for	mapping	then	bean	properties	with	the	same	names	should	be	mapped.	If	there	are	additional
mappings	needed,	which	can	not	be	derived	by	the	naming	you	should	add	those	either	via	XML,	annotations	or	API.

Explicit	mode	assumes	that	no	mappings	should	be	performed	or	"guessed"	until	you	have	specified	those
specifically.	The	amount	of	coding	is	higher	in	explicit	mode,	but	sometimes	you	would	like	to	have	full	control	on	what
is	going	on	during	the	mappings	process	and	this	approach	is	also	used	in	many	of	the	productive	applications.
Implicit/Explicit	mapping	switch	is	called	"wildcard"	in	Dozer.

Injecting	Custom	Mapping	Files

The	Dozer	mapping	xml	file(s)	define	any	custom	mappings	that	can’t	be	automatically	performed	by	the	Dozer
mapping	engine.	Any	custom	Dozer	mapping	files	need	to	be	injected	into	the		Mapper		implementation	via
	DozerBeanMapperBuilder#withMappingFiles(..)		method.

Preferably,	you	will	be	using	an	IOC	framework	such	as	Spring	for	these	Dozer	injection	requirements.	Alternatively,
the	injection	of	mapping	files	can	be	done	programmatically.	Below	is	a	programmatic	approach	to	creating	a	bean
mapper.	Note	that	this	is	NOT	the	recommended	way	to	retrieve	the	bean	mapper.	Each	new	instance	needs	to	be
initialized	and	this	consumes	time	as	well	as	resources.	If	you	are	using	the	mapper	this	way	just	wrap	it	using	the
singleton	pattern.

Mapper	mapper	=	DozerBeanMapperBuilder.create()
								.withMappingFiles("dozerBeanMapping.xml",	"someOtherDozerBeanMappings.xml")
								.build();

DestinationObject	destObject	=	mapper.map(sourceObject,	DestinationObject.class);

Spring	Integration

The	following	is	an	example	how	the	Mapper	bean	would	be	configured	via	Spring.

<bean	id="mapper"	class="com.github.dozermapper.core.DozerBeanMapper">
				<property	name="mappingFiles">
								<list>

Usage

9

												<value>dozer-global-configuration.xml</value>
												<value>dozer-bean-mappings.xml</value>
												<value>more-dozer-bean-mappings.xml</value>
								</list>
				</property>
</bean>

Usage

10

Custom	Mappings	Via	Dozer	XML	Files
This	section	will	cover	setting	up	custom	mappings	in	xml	file(s).	If	the	two	different	types	of	data	objects	that	you	are
mapping	contain	any	fields	that	don’t	share	a	common	property	name,	you	will	need	to	add	a	class	mapping	entry	to
your	custom	mapping	xml	file.	These	mappings	xml	files	are	used	at	runtime	by	the	Dozer	mapping	engine.

Dozer	automatically	performs	any	type	conversion	when	copying	the	source	field	data	to	the	destination	field.	The
Dozer	mapping	engine	is	bi-directional,	so	if	you	wanted	to	map	the	destination	object	to	the	source	object,	you	do	not
need	to	add	another	class	mapping	to	the	xml	file.

An	example	of	a	mapping	file…​.

<?xml	version="1.0"	encoding="UTF-8"?>
<mappings	xmlns="http://dozermapper.github.io/schema/bean-mapping"
										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
										xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping	http://dozermapper.github.io/schema/bean-ma
pping.xsd">
				<mapping>
								<class-a>com.github.dozermapper.core.vo.TestObject</class-a>
								<class-b>com.github.dozermapper.core.vo.TestObjectPrime</class-b>
								<field>
												<a>one
												onePrime
								</field>
				</mapping>
				<mapping	wildcard="false">
								<class-a>com.github.dozermapper.core.vo.TestObjectFoo</class-a>
								<class-b>com.github.dozermapper.core.vo.TestObjectFooPrime</class-b>
								<field>
												<a>oneFoo
												oneFooPrime
								</field>
				</mapping>
</mappings>

A	mappings	element	has	multiple	mapping	elements,	each	with	class	mapping	declarations	and	field	level	mappings.
The	wildcard	attribute	is	set	to	true	by	default.	This	means	that	it	will	automatically	try	to	map	every	property	in	the	two
objects.	When	the	attribute	is	set	to	false	it	will	only	map	explicitly	defined	fields.

IMPORTANT:	Properties	that	are	of	the	same	name	do	not	need	to	be	specified	in	the	mapping	xml	file.	Dozer
automatically	maps	all	fields	with	the	same	property	name	from	the	source	object	into	the	destination	object.

How	Custom	Mapping	Files	Are	Loaded

Dozer	will	search	the	entire	classpath	looking	for	the	specified	file.	The	generally	acceptable	way	of	distributing	your
mappings	is	to	bundle	them	inside	your	application	archive.

Alternatively,	you	can	load	files	from	outside	the	classpath	by	prepending	"file:"	to	the	resource	name.	Ex)
"file:c:\somedozermapping.xml"

Loading	Files	from	Input	Stream

Since	version	5.4.0	it	is	possible	to	load	XML	mapping	files	from	provided	InputStream	object.	Check	DozerMapper
class	for	the	corresponding	API	calls.

Mappings	via	XML

11

Mappings	via	XML

12

Annotation	Mappings

Why	Annotations?

One	of	the	downsides	of	using	Dozer	for	the	long	time	was	Xml.	Since	Dozer	started	during	Xml-hype	years	more
than	five	years	ago	that	was	pretty	obvious	choice	back	then.	After	that	Java	5	brought	us	annotations	and	new
industry	accepted	style	of	configuring	behaviour	are	Domain-Specific	Languages.	DSL-like	support	is	provided	in	form
of	mapping	API,	but	since	version	5.3.2	Dozer	starts	providing	annotations	support	as	well.

The	obvious	reasons	to	use	annotations	is	to	avoid	duplicating	field	and	method	names	in	your	mapping	code.	The
annotation	can	be	put	onto	the	mapped	property	itself	thus	reducing	the	amount	of	code.	However	there	are	cases
when	annotations	should	be	avoided	or	even	impossible	to	use.	Some	of	them	are	the	following:

You	are	mapping	classes,	which	are	not	under	your	control,	but	provided	in	libraries;

The	mappings	are	quite	complex	and	require	many	configurations;

In	the	first	case	you	could	be	mapping	JAXB	generated	entities	or	third-party	DTOs	and	have	no	possibility	to	put
annotations.	In	the	second	case	there	is	a	choice	of	putting	lots	of	multi-line	annotations	or	isolating	the	mapping	code
with	certain	duplication	of	entity	names.	Overannotated	beans	could	be	problematic	to	read	and	understand.

Usage

WARNING:	Annotation	support	in	Dozer	is	experimental	and	does	not	cover	complex	use	cases	yet.	However	it	may
be	useful	to	implement	that	simplest	mappings	you	have	had	to	do	in	Xml	or	API	before.

The	idea	is	very	simple.	You	put	@Mapping	annotation	either	on	getter	of	field	directly.	If	Dozer	finds	that	it	adds	a	bi-
directional	mapping.	It	means	that	putting	annotation	once	will	create	mappings	for	both	conversion	types.	Type
conversions	(e.g.	String-Long)	will	be	chosen	automatically.	Global	custom	converters	are	resolved	as	well.
Annotations	work	only	if	a	conversion	is	subject	to	wildcard	rule	(active	by	default).	The	following	example
demonstrates	annotations	in	action.

public	class	SourceBean	{

				private	Long	id;

				private	String	name;

				@Mapping("binaryData")
				private	String	data;

				@Mapping("pk")
				public	Long	getId()	{
								return	this.id;
				}

				public	String	getName()	{
								return	this.name;
				}
}

public	class	TargetBean	{

				private	String	pk;

				private	String	name;

via	Annotations

13

				private	String	binaryData;

				public	void	setPk(String	pk)	{
								this.pk	=	pk;
				}

				public	void	setName(String	name)	{
								this.name	=	name;
				}
}

Mapping	the	given	beans	with	Dozer	will	result	in	all	three	fields	being	mapped.	Property	"name"	will	be	mapped	by
naming	convention.	Property	"id"	will	be	transformed	to	"pk".	Field	"data"	will	be	moved	to	"binaryData".	Do	not	worry
about	private	modifier;	it	will	be	handled	automatically.

Currently	Dozer	offers	only	one	annotation,	but	the	next	ones	will	be	added	in	following	releases.	As	for	now	you	can
mix	and	match	all	flavours	of	mapping	types	to	achieve	the	desired	effect:	Xml,	API	and	Annotations.

via	Annotations

14

API	Mappings

XML	Mapping	Flaws

XML-based	approach	is	stable	and	is	used	in	many	production	projects.	However,	it	imposes	several	limitations.

First,	and	most	important,	is	that	it	can	not	be	dynamically	generated.	All	XML	mappings	should	be	present	on
Dozer	start-up	and	can	not	be	modified	afterwards.	There	are	tricky	ways,	when	you	can	generate	and	put
mappings	to	the	file	system	by	your	own	templating	engine,	but	this	approach	is	not	supported	by	Dozer	itself.	By
generating	custom	mappings	you	are	able	to	automate	repetitive	chunks	of	low-level	Dozer	language.

Second	problem	is	that	you	are	forced	to	duplicate	all	of	your	Bean	class	names	in	Xml	mappings.	This	leads	to
lots	of	typing	and	copy-paste	programming.	This	can	be	partly	compensated	by	use	of	Expression	Language
inside	Xml,	but	it	is	not	solving	all	of	the	problems.

Refactoring	support	is	limited	as	IDE	should	keep	track	of	class	names	in	Xml	files	and	change	them	when	you
rename	or	move	the	referenced	class.	Auto-completion	support	is	also	not	available	in	all	IDEs.

API	Mappings

API	mappings	are	intended	to	solve	all	of	the	mentioned	problems.	To	preserve	backwards	compatibility	API
mappings	can	be	combined	with	existing	Xml	mappings.	In	fact	some	parts	of	the	configuration	(e.g.	global
configuration	block)	are	only	possible	to	express	in	Xml	format.

To	get	a	feeling	of	what	are	these	mappings	take	a	look	at	the	following	code	example.

import	com.github.dozermapper.core.classmap.RelationshipType;
import	com.github.dozermapper.core.loader.api.BeanMappingBuilder;
import	com.github.dozermapper.core.loader.api.FieldsMappingOptions;
import	com.github.dozermapper.core.loader.api.TypeMappingOptions;

import	static	com.github.dozermapper.core.loader.api.FieldsMappingOptions.collectionStrategy;
import	static	com.github.dozermapper.core.loader.api.FieldsMappingOptions.copyByReference;
import	static	com.github.dozermapper.core.loader.api.FieldsMappingOptions.customConverter;
import	static	com.github.dozermapper.core.loader.api.FieldsMappingOptions.customConverterId;
import	static	com.github.dozermapper.core.loader.api.FieldsMappingOptions.hintA;
import	static	com.github.dozermapper.core.loader.api.FieldsMappingOptions.hintB;
import	static	com.github.dozermapper.core.loader.api.FieldsMappingOptions.useMapId;
import	static	com.github.dozermapper.core.loader.api.TypeMappingOptions.mapId;
import	static	com.github.dozermapper.core.loader.api.TypeMappingOptions.mapNull;

public	class	MyClass	{

				public	void	create()	{
								BeanMappingBuilder	builder	=	new	BeanMappingBuilder()	{
												protected	void	configure()	{
																mapping(Bean.class,	Bean.class,
																								TypeMappingOptions.oneWay(),
																								mapId("A"),
																								mapNull(true)
)
																				.exclude("excluded")
																				.fields("src",	"dest",
																												copyByReference(),
																												collectionStrategy(true,	RelationshipType.NON_CUMULATIVE),
																												hintA(String.class),
																												hintB(Integer.class),
																												FieldsMappingOptions.oneWay(),
																												useMapId("A"),
																												customConverterId("id")

via	API

15

)
																				.fields("src",	"dest",
																												customConverter("com.github.dozermapper.core.CustomConverter")
);
												}
								};
				}
}

Constructed	builder	object	should	be	then	passed	to		DozerBeanMapperBuilder	.	It	is	possible	to	add	multiple	Builder
classes.

Mapper	mapper	=	DozerBeanMapperBuilder.create()
								.withMappingBuilder(builder)
								.build();

via	API

16

Configuration
Dozer	configuration	properties	can	be	customized	via	an	optional	Dozer	properties	file.	By	default,	Dozer	will	look	for	a
file	named	dozer.properties	to	load	configuration	properties.	If	a	properties	file	is	not	found	or	specified,	default	values
will	be	used.

Dozer	is	distributed	with	an	example	dozer.properties	file	in	/config	that	shows	the	various	options.	Just	put	the
example	file	in	your	classpath	and	customize	it.

An	alternative	Dozer	properties	file	can	be	specified	via	the	dozer.configuration	system	property.	ex)	-
Ddozer.configuration=someDozerConfigurationFile.properties

Table	1.	Dozer	Configuration	Properties

Property	Name Description Valid	Values Default

dozer.el.enabled

Specifies	whether
during	Xml
mappings	parsing
Dozer	will	recognize
EL	expressions.

true false false

dozer.cache.converter-
by-dest-type-maxsize

Specifies	the	max
size	for	one	of
Dozers	internal
caches.

0	-
Long.MAX_VALUE 10000

dozer.cache.super-
type-maxsize

Specifies	the	max
size	for	one	of
Dozers	internal
caches

0	-
Long.MAX_VALUE 10000

dozer.beans.proxy-
resolver-bean

Specifies
implementation	of
DozerProxyResolver
to	be	used

Valid	class	name Default
implementation

dozer.beans.class-
loader-bean

Specifies
implementation	of
DozerClassLoader
to	be	used

Valid	class	name Default
implementation

Configuration

17

Configuration	via	XML
The	majority	of	Dozer’s	behaviour	can	be	configured	from	within	XML	mapping	files.	Settings	can	appear	inside	five
different	scopes	which	affect	the	elements	they	are	applied	to:	Global,	per	class	mapping,	at	individual	class	level,	per
field	mapping,	and	at	individual	field	level.

Configuration	Scopes

Global	Scope

The	configuration	block	is	used	to	set	the	global	default	settings.	Also,	any	Custom	Converters	are	defined	in	this
section.	The	configuration	block	is	entirely	"optional".

Dozer	supports	the	ability	to	have	multiple	mapping	files.	Each	of	these	mapping	files	can	have	their	own	configuration
block.	A	mapping	will	inherit	its	configuration	from	the	mapping	file	that	it	is	stored	in.	Implicit	mappings	will	inherit
the	default	values	for	configuration.

The	following	is	the	sample	configuration	block	from	the	example	mappings	file:

<configuration>
				<date-format>MM/dd/yyyy	HH:mm</date-format>
				<stop-on-errors>true</stop-on-errors>
				<wildcard>true</wildcard>
				<custom-converters>
								<!--	these	are	always	bi-directional	-->
								<converter	type="com.github.dozermapper.core.converters.TestCustomConverter">
												<class-a>com.github.dozermapper.core.vo.TestCustomConverterObject</class-a>
												<class-b>another.type.to.Associate</class-b>
								</converter>
				</custom-converters>
</configuration>

All	global	settings	appear	as	separate	XML	tags	containing	their	value.

Per	Class	Mapping

Global	settings	(or	their	defaults)	can	be	overridden	at	the	individual	mapping	level.	Here,	configuration	values	are	set
using	name="value"	attributes.	They	will	affect	all	mapping	operations	between	the	two	classes.

<mapping	wildcard="false"	date-format="MM/dd/yyyy	HH:mm">
				<class-a>com.github.dozermapper.core.vo.SpringBean</class-a>
				<class-b>com.github.dozermapper.core.vo.SpringBeanPrime</class-b>
				<field>
								<a>anAttributeToMap
								anAttributeToMapPrime
				</field>
</mapping>

At	Individual	Class	Level

Sometimes,	you	may	want	to	apply	a	setting	only	to	one	of	the	two	classes.	This	can	be	achieved	by	placing	the
attribute	inside	the		class-a		or		class-b		tag:

<mapping>
				<class-a	is-accessible="true">com.github.dozermapper.core.vo.SpringBean</class-a>

Configuration	via	XML

18

				<class-b>com.github.dozermapper.core.vo.SpringBeanPrime</class-b>
				<field>
								<a>anAttributeToMap
								anAttributeToMapPrime
				</field>
</mapping>

Per	Field	Mapping

Likewise,	you	can	change	the	mapping	behaviour	for	specific	field	pairs:

<mapping>
				<class-a>com.github.dozermapper.core.vo.SpringBean</class-a>
				<class-b>com.github.dozermapper.core.vo.SpringBeanPrime</class-b>
				<field	remove-orphans="false">
								<a>anAttributeToMap
								anAttributeToMapPrime
				</field>
</mapping>

At	Individual	Field	Level

Finally,	some	settings	can	be	applied	to	a	single	field:

<mapping>
				<class-a>com.github.dozermapper.core.vo.SpringBean</class-a>
				<class-b>com.github.dozermapper.core.vo.SpringBeanPrime</class-b>
				<field>
								<a	get-method="getTheAttribute">anAttributeToMap
								anAttributeToMapPrime
				</field>
</mapping>

Available	Configuration	Settings

The	following	table	lists	the	available	configuration	options	and	mapping	directives,	in	which	scopes	they	can	appear,
and	the	section	of	the	manual	containing	more	information:

Name Global Class
Mapping

Single
Class

Field
Mapping

Single
Field

Manual
Section

allowed-
exceptions X see	below

custom-
converter X Custom

Converters

custom-
converter-id X Custom

Converters

custom-
converter-
param

X Custom
Converters

copy-by-
reference X Copy	By

Reference

copy-by-
references X Copy	By

Reference

Configuration	via	XML

19

create-
method X X

Custom
Create
Method

bean-
factory X X X

Custom
Bean
Factories

date-format X X X
String	to
Date
Mapping

factory-
bean-id X

Custom
Bean
Factories

get-method X Custom
Methods

is-
accessible X X

Mapping
immutable
types

key X Map
Mapping

map-empty-
string X X X Excluding

Fields

map-id X
Context
Based
Mapping

map-null X X X Excluding
Fields

map-set-
method X X Map

Mapping

map-get-
method X X Map

Mapping

relationship-
type X X X Collection

Mapping

remove-
orphans X Collection

Mapping

set-method X Custom
Methods

skip-
constructor X

Mapping
immutable
types

stop-on-
errors X see	below

Configuration	via	XML

20

trim-strings X X see	below

type X X One-Way
Mapping

variables X Expression
Language

wildcard X X see	below

wildcard-
case-
insensitive

X X see	below

Error	handling	(stop-on-errors,	allowed-exceptions)

By	default,	if	Dozer	encounters	an	error	while	performing	a	field	mapping,	an	exception	is	thrown	and	the	mapping
aborted.	While	this	is	the	recommended	behaviour,	Dozer	can	be	instructed	to	ignore	the	error	and	simply	continue
with	the	next	field,	via	the		stop-on-errors		policy.

You	can	also	specify	exceptions	that	should	cause	Dozer	to	stop	and	rethrow	them,	even	if		stop-on-errors		is	set	to
false,	using	the		allowed-exceptions		element:

<configuration>
				<stop-on-errors>false</stop-on-errors>
				<allowed-exceptions>
								<exception>org.example.UnrecoverableError</exception>
								<exception>org.example.BadException</exception>
				</allowed-exceptions>
</configuration>

Trimming	Strings	(trim-strings)

As	the	name	suggests,		trim-strings		applies	Java’s	String.trim()	to	the	source	value	before	calling	the	target	beans’s
setter.

Wildcard	mapping	(wildcard,	wildcard-case-insensitive)

Per	default,	Dozer	maps	all	fields	between	source	and	target	bean	that	share	the	same	name	("wildcard	mapping").
Listing	fields	in	mapping	definitions	does	not	override	this	behaviour,	except	for	the	given	fields.	For	example,	given
the	following	classes

class	Person	{
				private	String	firstName;
				private	String	lastName;
}

class	Contact	{
				private	String	firstName;
				private	String	surname;
}

and	the	mapping	definition

<mapping>

Configuration	via	XML

21

				<class-a>com.github.dozermapper.core.vo.Person</class-a>
				<class-b>com.github.dozermapper.core.vo.Contact</class-b>
				<field>
								<a>lastName
								surname
				</field>
</mapping>

a	mapping	from	a		Person		object	onto	a		Contact		will	map		lastName		to		surname		and		firstName		to		firstName	,	even
though	the	latter	pair	is	not	mentioned	in	the	mapping	definition.

You	can	disable	wildcard	mapping	globally	or	at	the	class	mapping	level	by	setting		wildcard		to	false.	If	you	do,	you
have	to	explicitly	specify	each	pair	of	fields	that	should	be	mapped:

<mapping	wildcard="false">
				<class-a>com.github.dozermapper.core.vo.Person</class-a>
				<class-b>com.github.dozermapper.core.vo.Contact</class-b>
				<field>
								<a>lastName
								surname
				</field>
				<field>
								<a>firstName
								firstName
								</field>
</mapping>

Up	to	Dozer	version	5.4.0,	wildcard	mappings	were	case	insensitive.	Current	versions	of	Dozer	only	automatically
map	fields	with	the	exact	same	name.	You	can	enable	the	old	case	insensitive	behaviour	by	setting	the		wildcard-case-
insensitive		policy	to	true.	Then,	for	example	a	source	field	named		camelCase		will	be	mapped	to	target	field		camelcase	
(and	vice	versa).

Configuration	via	XML

22

Configuration	via	API
If	you	are	using	the	MapperBuilder	to	define	your	mappings,	you	can	declare	mapping,	class,	and	field	configuration
settings	programmatically:

Mapper	mapper	=	DozerBeanMapperBuilder.create()
																.withMappingBuilder(new	BeanMappingBuilder()	{
																				@Override
																				protected	void	configure()	{
																								mapping(type(A.class).mapEmptyString(true),
																																type(B.class),
																																TypeMappingOptions.wildcardCaseInsensitive(true)
).fields(
																																field("fieldOfA").getMethod("getTheField"),
																																field("fieldOfB"),
																																FieldsMappingOptions.oneWay()
);
																				}
																})
																.build();

Global	configuration	is	currently	not	supported	by	the	API.

Please	see	Configuration	via	XML	for	a	list	of	the	available	configuration	settings.

Configuration	via	API

23

Mapping	Classes
An	example	of	mapping	two	classes	is	defined	below.	Note:	Explicit	xml	mapping	for	2	classes	is	not	required	if	all	the
field	mapping	between	src	and	dest	object	can	be	performed	by	matching	on	attribute	name.	Custom	xml	class
mapping	is	only	required	when	you	need	to	specify	any	custom	field	mappings.

<mappings>
				<mapping>
								<class-a>com.github.dozermapper.core.vo.TestObject</class-a>
								<class-b>com.github.dozermapper.core.vo.TestObjectPrime</class-b>
								<!--	Any	custom	field	mapping	xml	would	go	here	-->
				</mapping>
</mappings>

These	mappings	are	bi-directional	so	you	would	never	need	to	define	an	XML	map	for	TestObjectPrime	to	TestObject.
If	these	two	classes	had	references	to	complex	types	that	needed	type	transformation,	you	would	also	define	them	as
mappings.	Dozer	recursively	goes	through	an	object	and	maps	everything	in	it.	Data	type	conversion	is	performed
automatically.	Dozer	also	supports	no	attribute	mappings	at	all.	If	supplied	two	classes	that	are	not	mapped,	it	simply
tries	to	map	properties	that	are	the	same	name.

Mapping	Classes

24

Basic	Property	Mapping

Implicit	Property	Mapping	(bi-directional)

Matching	field	names	are	automatically	handled	by	Dozer.

Properties	that	are	of	the	same	name	do	not	need	to	be	specified	in	the	mapping	xml	file.

Simple	Mappings	(bi-directional)

We	will	start	off	simple.	If	you	have	two	properties	with	different	names	they	can	be	mapped	as	such:

<field>
				<a>one
				onePrime
</field>

Data	type	conversion

Data	type	coversion	is	performed	automatically	by	the	Dozer	mapping	engine.	Currently,	Dozer	supports	the	following
types	of	conversions:	(these	are	all	bi-directional)

Primitive	to	Primitive	Wrapper

Primitive	to	Custom	Wrapper

Primitive	Wrapper	to	Primitive	Wrapper

Primitive	to	Primitive

Complex	Type	to	Complex	Type

String	to	Primitive

String	to	Primitive	Wrapper

String	to	Complex	Type	if	the	Complex	Type	contains	a	String	constructor

String	to	Map

Collection	to	Collection

Collection	to	Array

Map	to	Complex	Type

Map	to	Custom	Map	Type

Enum	to	Enum

Each	of	these	can	be	mapped	to	one	another:	java.util.Date,	java.sql.Date,	java.sql.Time,	java.sql.Timestamp,
java.util.Calendar,	java.util.GregorianCalendar

String	to	any	of	the	supported	Date/Calendar	Objects.

Objects	containing	a	toString()	method	that	produces	a	long	representing	time	in	(ms)	to	any	supported
Date/Calendar	object.

Recursive	Mapping	(bi-directional)

Basic	Property	Mapping

25

Dozer	supports	full	Class	level	mapping	recursion.	If	you	have	any	complex	types	defined	as	field	level	mappings	in
your	object,	Dozer	will	search	the	mappings	file	for	a	Class	level	mapping	between	the	two	Classes	that	you	have
mapped.	If	you	do	not	have	any	mappings,	it	will	only	map	fields	that	are	of	the	same	name	between	the	complex
types.

Basic	Property	Mapping

26

Inheritance	Mapping

Reducing	Mapping	XML	when	using	base	class	attributes

Properties	that	are	of	the	same	name	do	not	need	to	be	specified	in	the	mapping	xml	file	unless	hints	are
needed.

If	you	are	mapping	subclasses	that	also	have	have	base	class	attributes	requiring	mapping	XML,	you	might	be
inclined	to	reproduce	base	class	field	maps	in	each	subclass	mapping	element,	like	the	following	example:

<mapping>
				<class-a>com.github.dozermapper.core.vo.SubClass</class-a>
				<class-b>com.github.dozermapper.core.vo.SubClassPrime</class-b>
				<field>
								<!--	this	is	the	same	for	all	sub	classes	-->
								<a>superAttribute
								superAttr
				</field>
				<field>
								<a>attribute2
								attributePrime2
				</field>
</mapping>
<mapping>
				<class-a>com.github.dozermapper.core.vo.SubClass2</class-a>
				<class-b>com.github.dozermapper.core.vo.SubClassPrime2</class-b>
				<field>
								<!--	this	is	the	same	for	all	sub	classes	-->
								<a>superAttribute
								superAttr
				</field>
				<field>
								<a>attribute2
								attributePrime2
				</field>
</mapping>

In	the	previous	mapping,	some	of	the	fields	were	from	a	common	base	class,	but	you	had	to	reproduce	them	into	each
mapping	of	the	sub	classes.

However,	a	better	way	to	do	it	would	be	to	map	the	base	class	individually.	This	can	be	done	for	each	base	class	(in
the	case	of	a	larger	heirarchy).	Assuming	the	base	class	name,	below	is	the	refactored	mapping	xml:

<mapping>
				<class-a>com.github.dozermapper.core.vo.SuperClass</class-a>
				<class-b>com.github.dozermapper.core.vo.SuperClassPrime</class-b>
				<field>
								<a>superAttribute
								superAttr
				</field>
</mapping>
<mapping>
				<class-a>com.github.dozermapper.core.vo.SubClass</class-a>
				<class-b>com.github.dozermapper.core.vo.SubClassPrime</class-b>
				<field>
								<a>attribute
								attributePrime
				</field>
</mapping>
<mapping>
				<class-a>com.github.dozermapper.core.vo.SubClass2</class-a>

Inheritance	Mapping

27

				<class-b>com.github.dozermapper.core.vo.SubClassPrime2</class-b>
				<field>
								<a>attribute2
								attributePrime2
				</field>
</mapping>

The	following	images	explain	some	of	the	different	scenarios	dozer	handles.	Each	diagram	shows	two	mapped	class
hierarchies	and	existing	relations,	which	Dozer	recognizes	and	maps.

Scenario	1	shows	that	if	you	map	SubClass	to	ClassPrime	all	attributes	from	SuperClass	→	ClassPrime	will	be
mapped	as	well.

Scenario	2	shows	that	Dozer	has	no	limitations	on	the	inheritance	depth	it	analyzes	to	find	parent	mappings.

Inheritance	Mapping

28

Scenario	3	shows	that	it	is	possible	to	map	two	collections	with	different	subctypes	of	the	same	parent	type.	This	is
done	by	providing	hints	to	the	collection	mapping,	describing	all	potential	subclasses.

<field>
				<a>aList
				bList
				<a-hint>B1,B2</a-hint>
				<b-hint>BPrime1,BPrime2</b-hint>
</field>

Inheritance	Mapping

29

Context	Based	Mapping
Context	based	mapping	can	be	specified	by	using	the	map-id	attribute.	Note	that	we	also	support	nested	context
mapping	by	specifying	a	map-id	at	the	field	level.

<mapping	map-id="caseA">
				<class-a>com.github.dozermapper.core.vo.context.ContextMapping</class-a>
				<class-b>com.github.dozermapper.core.vo.context.ContextMappingPrime</class-b>
				<field-exclude>
								<a>loanNo
								loanNo
				</field-exclude>
				<field	map-id="caseC">
								<a>contextList
								contextList
								<b-hint>com.github.dozermapper.core.vo.context.ContextMappingNestedPrime
					</b-hint>
				</field>
</mapping>
<mapping	map-id="caseB">
				<class-a>com.github.dozermapper.core.vo.context.ContextMapping</class-a>
				<class-b>com.github.dozermapper.core.vo.context.ContextMappingPrime</class-b>
</mapping>
<mapping	map-id="caseC">
				<class-a>com.github.dozermapper.core.vo.context.ContextMappingNested</class-a>
				<class-b>com.github.dozermapper.core.vo.context.ContextMappingNestedPrime
		</class-b>
				<field-exclude>
								<a>loanNo
								loanNo
				</field-exclude>
</mapping>
<mapping	map-id="caseD">
				<class-a>com.github.dozermapper.core.vo.context.ContextMappingNested</class-a>
				<class-b>com.github.dozermapper.core.vo.context.ContextMappingNestedPrime
		</class-b>
</mapping>

To	use	a	particular	context	when	invoking	the	Mapper,	you	simply	specify	the	map-id	in	your	mapping	call.

ContextMappingPrime	cmpA	=	mapper.map(cm,	ContextMappingPrime.class,	"caseA");

Context	Based	Mapping

30

One-Way	Mapping
You	can	set	how	a	mapping	definition	behaves	as	far	as	direction	goes.	If	you	only	want	to	map	two	classes	to	go
one-way	you	can	set	this	at	the	mapping	level.	The	default	is	bi-directional.	This	can	be	set	at	the	mapping	level	OR
the	field	level.	When	one-way	is	specified,	"a"	is	always	the	src	object	and	"b"	is	always	the	destination	object.

<mapping	type="one-way">
				<class-a>com.github.dozermapper.core.vo.TestObjectFoo</class-a>
				<class-b>com.github.dozermapper.core.vo.TestObjectFooPrime</class-b>
				<field>
								<a>oneFoo
								oneFooPrime
				</field>
</mapping>

In	the	following	example	the	one-way	fields	are	only	mapped	when	"a"	object	is	mapped	to	"b"	object.	If	"b"	is	mapped
to	"a",	then	the	field	is	not	mapped.

<mapping>
				<class-a>com.github.dozermapper.core.vo.TestObjectFoo2</class-a>
				<class-b>com.github.dozermapper.core.vo.TestObjectFooPrime2</class-b>
				<field	type="one-way">
								<a>oneFoo2
								oneFooPrime2
				</field>
				<field	type="one-way">
								<a>oneFoo3.prime
								oneFooPrime3
				</field>
</mapping>

Excluding	Fields	One-Way

Dozer	supports	field	excludes	going	one-way	as	shown	in	the	example.	In	the	example	the	field	is	only	excluded	when
"a"	is	mapped	to	"b".	If	"b"	is	mapped	to	"a",	then	the	field	is	not	excluded.

<field-exclude	type="one-way">
				<a>fieldToExclude
				fieldToExclude
</field-exclude>

One-Way	Mapping

31

Copying	By	Object	Reference
Dozer	supports	copying	an	object	by	reference.	No	conversion/transformation	is	done	for	such	objects.	This	approach
allows	to	decrease	a	number	of	object	allocations,	but	is	applicable	only	when	Java	Beans	are	to	be	thrown	away
(Garbage	Collected)	after	transformation.	This	approach	is	generally	recommended	for	performance	tuning	of	the
mapping	process	when	possible.	Make	sure	that	both	object	types	are	the	same	or	you	will	run	into	casting	problems.
The	default	value	is	'false'.

<field	copy-by-reference="true">
				<a>copyByReference
				copyByReferencePrime
</field>

This	is	also	supported	at	the	class	level.	Just	define	the	classes	you	want	to	be	copied	by	reference	in	the
configuration	block.

<configuration>
				<copy-by-references>
								<copy-by-reference>
							com.github.dozermapper.core.vo.NoExtendBaseObjectGlobalCopyByReference
					</copy-by-reference>
				</copy-by-references>
</configuration>

On	the	class	level	wildcard	expressions	are	allowed.	Copy	by	reference	is	applied	via	mask,	which	can	inlcude
multiple	wildcard	(*)	characters.

<configuration>
				<copy-by-references>
								<copy-by-reference>
							com.github.dozermapper.core.vo.*
					</copy-by-reference>
								<copy-by-reference>
							com.github.dozermapper.core.*.vo.*DTO
					</copy-by-reference>
				</copy-by-references>
</configuration>

Referencing	self	(this)	in	a	field	mapping

Using	a	field	mapping	it	is	possible	to	map	where	N	==	0	(self,	or	this).	In	the	following	example	SimpleAccount	is
mapped	to	Address.	It	is	also	mapped	to	Account.	Suppose	Address	was	an	attribute	on	Account.	How	could	we	map
the	values	on	SimpleAccount	to	that	property?	The	answer	is	to	use	the	keyword	(this)	to	denote	using	the	class	being
mapped	as	the	source	object.

<mapping>
				<classa>com.github.dozermapper.core.vo.self.SimpleAccount</classa>
				<classb>com.github.dozermapper.core.vo.self.Account</classb>
				<field>
								<a>this
								address
				</field>
</mapping>
<mapping>
				<classa>com.github.dozermapper.core.vo.self.SimpleAccount</classa>
				<classb>com.github.dozermapper.core.vo.self.Address</classb>

Copying	By	Object	Reference

32

				<field>
								<a>streetName
								street
				</field>
</mapping>

Copying	By	Object	Reference

33

Deep	Property	Mapping
It	is	possible	to	map	deep	properties.	An	example	would	be	when	you	have	an	object	with	a	String	property.	Your
other	object	has	a	String	property	but	it	is	several	levels	deep	within	the	object	graph.	In	the	example	below	the
DestDeepObj	has	nested	attributes	within	the	object	graph	that	need	to	be	mapped.	Type	hints	are	supported	for	deep
field	mappings.	The	attributes	copy-by-reference,	type=one-way,	and	relationship-type	can	also	be	used.

<mapping>
				<class-a>com.github.dozermapper.core.vo.deep.SrcDeepObj</class-a>
				<class-b>com.github.dozermapper.core.vo.deep.DestDeepObj</class-b>
				<field>
								<a>srcNestedObj.src1
								dest1
				</field>
				<field>
								<a>srcNestedObj.src2
								dest2
				</field>
				<field>
								<a>srcNestedObj.srcNestedObj2.src5
								dest5
				</field>
				<field>
								<!--	java.util.List	to	java.util.List	-->
								<a>srcNestedObj.hintList
								hintList
								<a-hint>java.lang.String</a-hint>
								<b-hint>java.lang.Integer</b-hint>
				</field>
				<field>
								<a>srcNestedObj.hintList2
								hintList2
								<a-hint>com.github.dozermapper.core.vo.TheFirstSubClass</a-hint>
								<b-hint>com.github.dozermapper.core.vo.TheFirstSubClassPrime</b-hint>
				</field>
				<field	copy-by-reference="true">
								<a>srcNestedObj.hintList3
								hintList3
				</field>
</mapping>

Deep	Indexed	Mapping

Indexed	mapping	within	deep	mapping	is	supported.

<field>
				<a>offSpringName
				pets[1].offSpring[2].petName
</field>

Destination	Hints	are	NOT	required	if	the	indexed	collection	is	an	Array	or	if	you	are	using	jdk	1.5	Generics.	Dozer	is
able	to	automatically	determine	the	property	type	for	these	use	cases.	But	you	will	need	to	provide	hints	if	the	data
types	are	not	Arrays	or	if	you	are	not	using	Generics.	This	is	required	so	that	Dozer	knows	what	types	of	dest	objects
to	create	while	it	traverses	the	deep	field	mapping.

The	following	is	an	example	of	using	hints…​..

<field>
				<a>someField

Deep	Property	Mapping

34

				someList[1].someOtherList[0].someOtherField
				<b-deep-index-hint>
								com.github.dozermapper.core.vo.TestObject,	com.github.dozermapper.core.vo.AnotherTestObject
				</b-deep-index-hint>
</field>

Deep	Property	Mapping

35

Indexed	Property	Mapping
Fields	that	need	to	be	looked	up	or	written	to	by	indexed	property	are	supported.

<mapping>
				<class-a>com.github.dozermapper.core.vo.Individuals</class-a>
				<class-b>com.github.dozermapper.core.vo.FlatIndividual</class-b>
				<field>
								<a>usernames[0]
								username1
				</field>
				<field>
								<a>usernames[1]
								username2
				</field>
				<field>
								<a>individual.username
								username2
				</field>
				<field>
								<a>secondNames[1]
								secondName1
				</field>
				<field>
								<a>secondNames[2]
								secondName2
				</field>
				<field>
								<a>aliases.otherAliases[0]
								primaryAlias
				</field>
</mapping>

Indexed	Property	Mapping

36

Excluding	Fields
Dozer	supports	excluding	fields	from	a	mapping	using	the	field-exclude	tag.	We	also	support	field	excludes	going	one-
way	as	shown	in	the	example.

<field-exclude>
				<a>fieldToExclude
				fieldToExclude
</field-exclude>

<field-exclude	type="one-way">
				<a>fieldToExclude
				fieldToExclude
</field-exclude>

Wildcard	-	excluding	default	field	mappings

There’s	also	a	flag	(wildcard)	set	on	class	mapping	which	controls	whether	the	default	mapping	(which	applies	to	pair
of	properties	of	the	same	name)	should	be	done.	The	default	value	is	true.	For	example:

<mapping	wildcard="false">
				<class-a>com.github.dozermapper.core.vo.AnotherTestObject</class-a>
				<class-b>com.github.dozermapper.core.vo.AnotherTestObjectPrime</class-b>
				<field>
								<a>field1
								field1
				</field>
</mapping>

This	configuration	would	cause	only	the	fields		field1		in	both	classes	to	be	mapped,	even	if	both	classes	share	a
property	with	the	same	name	called`field2`.

Exclude	Mapping	Null	Values

You	can	bypass	the	mapping	of	null	values.	If	this	is	specified,	the	dest	field	mapping	is	bypassed	at	runtime	and	the
destination	value	setter	method	will	not	be	called	if	the	src	value	is	null.	This	can	be	specified	at	the	mapping	or	class
level.	For	example:

<mapping	map-null="false">
				<class-a>com.github.dozermapper.core.vo.AnotherTestObject</class-a>
				<class-b>com.github.dozermapper.core.vo.AnotherTestObjectPrime</class-b>
				<field>
								<a>field4
								to.one
				</field>
</mapping>

OR…​

<mapping>
				<class-a>com.github.dozermapper.core.vo.AnotherTestObject</class-a>
				<class-b	map-null="false">com.github.dozermapper.core.vo.AnotherTestObjectPrime
		</class-b>
				<field>
								<a>field4
								to.one
				</field>

Excluding	Fields

37

</mapping>

Exclude	Mapping	Empty	Strings

You	can	bypass	the	mapping	of	empty	String	values.	If	this	is	specified,	the	dest	field	mapping	is	bypassed	at	runtime
and	the	destination	value	setter	method	will	not	be	called	if	the	src	value	is	an	empty	String.	This	can	be	specified	at
the	mapping	or	class	level.	For	example:

<mapping	map-empty-string="false">
				<class-a>com.github.dozermapper.core.vo.AnotherTestObject</class-a>
				<class-b>com.github.dozermapper.core.vo.AnotherTestObjectPrime</class-b>
				<field>
								<a>field4
								to.one
				</field>
</mapping>

OR…​

<mapping>
				<class-a>com.github.dozermapper.core.vo.AnotherTestObject</class-a>
				<class-b	map-empty-string="false">
						com.github.dozermapper.core.vo.AnotherTestObjectPrime
		</class-b>
				<field>
								<a>field4
								to.one
				</field>
</mapping>

Excluding	Fields

38

Mapping	Concepts

Assembler	Pattern

Dozer	can	be	used	as	an	Assembler	.	Martin	Fowler	has	a	great	explanation	of	why	and	when	you	would	use	an
Assembler	.	Basically,	it	is	a	way	to	take	multiple	fine	grain	objects	and	create	one	coarse	grain	object	used	for	data
transfer.	As	long	as	you	have	mappings	defined	for	each	of	your	fine	grained	objects	to	your	coarse	grain	object	you
can	call	the	mapper	multiple	times	to	achieve	the	desired	assembler	pattern.

mapper.map(sourceA,	ClassB.class);

Let’s	say	that	ClassA,	ClassB,	and	ClassC	all	map	to	ClassD.	First	create	these	individual	mappings	in	the	mapping
file.	Next,	call	the	mapper	once	for	each	mapping.	Note	that	this	would	also	work	in	a	bi-directinonal	manner.

ClassD	d	=	new	ClassD();
mapper.map(sourceA,	d);
mapper.map(sourceB,	d);
mapper.map(sourceC,	d);

Assembler	Pattern

39

http://www.martinfowler.com/eaaCatalog/dataTransferObject.html
http://www.martinfowler.com/eaaCatalog/dataTransferObject.html

Mapping	immutable	types
You	can	create	objects	when	constructor	is	not	available,	or	when	there	is	no	no-args	constructor	in	the	class.	Feature
is	designed	for	mapping	immutable	types.	To	use	it,	at	the	mapping	level	add	an	option	to	skip	the	constructor,	then	at
the	field	level	choose	to	inject	the	value	directly	to	the	field,	skipping	the	setter.

<mapping>
				<class-a>com.github.dozermapper.core.vo.AnyExternalModelClass</class-a>
				<class-b	skip-constructor="true">com.github.dozermapper.core.vo.ImmutableModelClass</class-b>
				<field>
								<a>externalModelField
								<b	is-accessible="true">ourFinalField
				</field>
</mapping>

Mapping	immutable	types

40

Enum	Mapping
To	map	an	enums	value	to	another	enum	is	shown	below.

<field>
				<a>status
				statusPrime
</field>

Based	on	the	following	code:

enum	Status	{
				PROCESSING,	SUCCESS,	ERROR
}

public	class	UserGroup	{

				private	Status	status;

				public	Status	getStatus()	{
								return	status;
				}

				public	void	setStatus(Status	status)	{
								this.status	=	status;
				}

}

enum	StatusPrime	{
				PROCESSING,	SUCCESS,	ERROR
}

public	class	UserGroupPrime	{

				private	StatusPrime	statusPrime;

				public	StatusPrime	getStatusPrime()	{
								return	statusPrime;
				}

				public	void	setStatusPrime(StatusPrime	statusPrime)	{
								this.statusPrime	=	statusPrime;
				}

}

Enums

41

String	to	Date	Mapping
A	date	format	for	the	String	can	be	specified	at	the	field	level	so	that	the	necessary	data	type	conversion	can	be
performed.

<field>
				<a	date-format="MM/dd/yyyy	HH:mm:ss:SS">dateString
				dateObject
</field>

A	default	date	format	can	also	be	specified	at	the	class	mapping	level.	This	default	date	format	will	be	applied	to	all
field	mappings	unless	it	is	overridden	at	the	field	level.

<mapping	date-format="MM-dd-yyyy	HH:mm:ss">
				<class-a>com.github.dozermapper.core.vo.TestObject</class-a>
				<class-b>com.github.dozermapper.core.vo.TestObjectPrime</class-b>
				<field>
								<a>dateString
								dateObject
				</field>
</mapping>

A	default	date	format	can	also	be	specified	at	the	very	top	mappings	level.	This	default	date	format	will	be	applied	to
all	field	mapppings	unless	it	is	overridden	at	a	lower	level

<mappings>
				<configuration>
								<date-format>MM/dd/yyyy	HH:mm</date-format>
				</configuration>
				<mapping	wildcard="true">
								<class-a>com.github.dozermapper.core.vo.TestObject</class-a>
								<class-b>com.github.dozermapper.core.vo.TestObjectPrime</class-b>
								<field>
												<a>dateString
												dateObject
								</field>
				</mapping>
				<mapping>
								<class-a>com.github.dozermapper.core.vo.SomeObject</class-a>
								<class-b>com.github.dozermapper.core.vo.SomeOtherObject</class-b>
								<field>
												<a>srcField
												destField
								</field>
				</mapping>
</mappings>

String	to	Date

42

Collection	and	Array	Mapping
Dozer	automatically	maps	between	collection	types	and	automatically	performs	any	type	conversion.	Each	element	in
the	source	collection	is	mapped	to	an	element	in	the	dest	object.	Hints	are	used	to	specify	what	type	of	objects	are
created	in	the	destination	collection.	The	following	collection	mapping	is	automatically	handled	by	Dozer:	(These	are
all	bi-directional)

List	to	List

List	to	Array

Array	to	Array

Set	to	Set

Set	to	Array

Set	to	List

Using	Hints	for	Collection	Mapping

Hints	are	not	required	if	you	are	using	JDK	1.5	Generics	or	Arrays	because	the	types	can	be	autodetected	by	Dozer.
But	if	you	are	not	using	generics	or	Arrays,	to	convert	a	Collection/Array	to	a	Collection/Array	with	different	type
objects	you	can	specify	a	Hint	to	let	Dozer	know	what	type	of	objects	you	want	created	in	the	destination	list.	If	a	Hint
is	not	specified	for	the	destination	field,	then	the	destination	Collection	will	be	populated	with	objects	that	are	the	same
type	as	the	elements	in	the	src	Collection.

<!--	converting	TheFirstSubClass	List	to	TheFirstSubClassPrime	List	-->
<field>
				<a>hintList
				hintList
				<b-hint>com.github.dozermapper.core.vo.TheFirstSubClassPrime</b-hint>
</field>

Below	is	a	summary	of	the	mapping	logic	used	when	mapping	Arrays,	Sets,	and	Lists.	This	gives	a	breakdown	of	what
happens	when	hints	are	or	are	not	used.

List	to	List

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	list	will	contain	the	same	data	types	in	the	source

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type

Array	to	List

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	list	will	contain	the	same	data	types	in	the	source

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type

List	to	Array

Collections	and	Arrays

43

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	array	will	contain	data	types	defined	by	the	array

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type	(only	if	Object	Array)

Array	to	Array

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	array	will	contain	data	types	defined	by	the	array

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type	(only	if	Object	Array)

Set	to	Set

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	list	will	contain	the	same	data	types	in	the	source

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type

Array	to	Set

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	list	will	contain	the	same	data	types	in	the	source

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type

Set	to	Array

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	array	will	contain	data	types	defined	by	the	array

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type	(only	if	Object	Array)

List	to	Set

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	list	will	contain	the	same	data	types	in	the	source

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type

Set	to	List

**	Dest	Hint	req’d:	NO

Dest	Hint	allowed:	YES

If	no	dest	hint	specified:	Dest	list	will	contain	the	same	data	types	in	the	source

If	hint	is	speficied:	Dest	list	will	contain	objects	that	match	dest	hint(s)	type

Collections	and	Arrays

44

Using	JDK	1.5	Generics	for	Collection	Mapping
Hints	are	not	required	when	JDK	1.5	Generics	are	used.	To	convert	a	Collection/Array	to	a	Collection/Array	with
different	type	objects	dozer	can	determine	parameterized	types	at	runtime.

public	class	UserGroup	{

		private	Set<User>	users;

		public	Set<User>	getUsers()	{
				return	users;
		}

		public	void	setUsers(Set<User>	aUsers)	{
				users	=	aUsers;
		}

}
public	class	UserGroupPrime	{

		private	List<UserPrime>	users;

		public	List<UserPrime>	getUsers()	{
				return	users;
		}

		public	void	setUsers(List<UserPrime>	aUsers)	{
				users	=	aUsers;
		}

}

Object	Array	to	List	(bi-directional)

When	converting	an	Object	array	to	a	List,	by	default	the	destination	List	will	contain	the	same	data	type	as	the	source
Array.

<!--	changing	an	Integer	[]	to	List	and	back	again	-->
<field>
				<a>arrayForLists
				listForArray
</field>

Use	a	hint	for	data	type	conversion.	Because	a	hint	is	specified,	the	destination	List	will	contain	String	elements
instead	of	Integers.

<!--	changing	an	Integer	[]	to	List	and	back	again	-->
<field>
				<a>arrayForLists
				listForArray
				<b-hint>java.lang.String</b-hint>
</field>

Primitive	Array	to	Primitive	Array	(bi-directional)

When	converting	an	Object	array	to	an	Array,	by	default	the	destination	Array	will	contain	the	same	data	type	as	the
source	Array.

<!--	converting	int[]	to	int	[]	by	name	only	-->

Collections	and	Arrays

45

<field>
				<a>anArray
				theMappedArray
</field>

Cumulative	vs.	Non-Cumulative	List	Mapping	(bi-directional)

If	you	are	mapping	to	a	Class	which	has	already	been	initialized,	dozer	will	either	'add'	or	'update'	objects	to	your	List.
If	your	List	or	Set	already	has	objects	in	it	dozer	checks	the	mapped	List,	Set,	or	Array	and	calls	the	contains()	method
to	determine	if	it	needs	to	'add'	or	'update'.	This	is	determined	using	the	relationship-type	attribute	on	the	field	tag.	The
default	is	'cumulative'.	relationship-type	can	be	specifed	at	the	field	mapping,	class	mapping,	or	global	configuration
level.

global	configuration	level…​.

<mappings>
				<configuration>
								<relationship-type>non-cumulative</relationship-type>
				</configuration>
</mappings>

class	mapping	level…​.

<mappings>
				<mapping	relationship-type="non-cumulative">
								<class-a>com.github.dozermapper.core.vo.TestObject</class-a>
								<class-b>com.github.dozermapper.core.vo.TestObjectPrime</class-b>
								<field>
												<a>someList
												someList
								</field>
				</mapping>
</mappings>

field	mapping	level…​.

<!--	objects	will	always	be	added	to	an	existing	List	-->
<field	relationship-type="cumulative">
				<a>hintList
				hintList
				<a-hint>com.github.dozermapper.core.vo.TheFirstSubClass</a-hint>
				<b-hint>com.github.dozermapper.core.vo.TheFirstSubClassPrime</b-hint>
</field>

<!--	objects	will	updated	if	already	exist	in	List,	added	if	they	are	not	present	-->
<field	relationship-type="non-cumulative">
				<a>unequalNamedList
				theMappedUnequallyNamedList
</field>

Note:	if	you	do	not	define	custom	equals()	and	hashCode()	methods	non-cumulative	option	will	not	function	properly,
as	Dozer	will	fail	to	determine	object	equality	and	will	rely	on	JDK	generated	object	Ids.	In	default	case	two	instances
of	a	class	are	always	treated	as	different	and	update	will	not	occure.

Removing	Orphans

Collections	and	Arrays

46

Orphans	are	elements	which	exist	in	a	destination	collection	that	did	not	exist	within	the	source	collection.	Dozer	will
remove	orphans	by	calling	the	'remove'	method	on	actual	orphans	of	the	underlying	destination	collection;	it	will	not
clear	all.	To	determine	elements	which	are	orphans	dozer	uses	the	contains()	method	to	check	if	the	results	contains
orphans.	The	default	setting	value	is	false.

<!--	orphan	objects	will	always	be	removed	from	an	existing	destination	List	-->
<field	remove-orphans="true">
				<a>srcList
				destList
</field>

Collections	and	Arrays

47

Map	Backed	Property	Mapping

Map	to	Map

Dozer	will	map	a	java.util.Map	to	a	java.util.Map.	If	there	are	complex	types	with	hints	it	will	do	deep	recursion
mapping	as	well.	If	the	destination	map	exists	it	will	add	elements	to	the	existing	map.

<mapping>
				<class-a>com.github.dozermapper.core.vo.map.MapToMap</class-a>
				<class-b>com.github.dozermapper.core.vo.map.MapToMapPrime</class-b>
				<field>
								<a>standardMapWithHint
								standardMapWithHint
								<a-hint>com.github.dozermapper.core.vo.TestObject</a-hint>
								<b-hint>com.github.dozermapper.core.vo.TestObjectPrime</b-hint>
				</field>
</mapping>

Mapping	Field	Level	Properties	to	a	java.util.Map	or	a	Custom	Map	with
unique	Get/Set	methods

Dozer	supports	mapping	map	backed	properties	at	the	field	level.	The	map	can	either	implement	the	java.util.Map
Interface	or	be	a	custom	map	with	a	set	of	unique	Get/Set	methods.

In	this	example	Field	A	is	a	basic	String	and	it	is	mapped	to	Field	B	which	is	a	HashMap.	The	key	in	the	HashMap	will
be	"stringProperty"	(the	attribute	name)	and	the	value	will	be	whatever	value	is	stored	in	that	attribute.

<mapping>
				<class-a>com.github.dozermapper.core.vo.map.PropertyToMap</class-a>
				<class-b>com.github.dozermapper.core.vo.map.MapToProperty</class-b>
				<field>
								<a>stringProperty
								hashMap
				</field>
</mapping>

This	example	shows	Field	A	is	a	basic	String	and	it	is	mapped	to	Field	B	which	is	a	HashMap.	The	key	in	the
HashMap	will	be	"myStringProperty"	and	the	value	will	be	whatever	value	is	stored	in	that	attribute.	Also	notice	that
Field	A	has	a	unique	setter()	method	name.

<mapping>
				<class-a>com.github.dozermapper.core.vo.map.PropertyToMap</class-a>
				<class-b>com.github.dozermapper.core.vo.map.MapToProperty</class-b>
				<field>
								<a	set-method="addStringProperty2">stringProperty2
								<b	key="myStringProperty">hashMap
				</field>
</mapping>

This	example	shows	Field	A	is	a	basic	String	and	it	is	mapped	to	Field	B	which	is	a	custom	map.	The	key	in	the
custom	map	will	be	"myCustomProperty"	and	the	value	will	be	whatever	value	is	stored	in	that	attribute.	Notice	that
Field	B	has	unique	map	getter()	and	map	setter()	method	names.	If	you	are	using	a	custom	map	you	must	explicitly
set	the	map	Get/Set	method	names.	A	destination	hint	can	also	be	provided	if	your	custom	map	implements	an
Interface	or	is	an	Abstract	class.

Map	Backed	Property	Mapping

48

<mapping>
				<class-a>com.github.dozermapper.core.vo.map.PropertyToMap</class-a>
				<class-b>com.github.dozermapper.core.vo.map.MapToProperty</class-b>
				<field>
								<a>stringProperty3
								<b	map-get-method="getValue"	map-set-method="putValue"	key="myCustomProperty">customMap
				</field>
				<field>
								<a>stringProperty4
								<b	map-get-method="getValue"	map-set-method="putValue"	key="myCustomNullProperty">nullCustomMap
								<b-hint>com.github.dozermapper.core.vo.map.CustomMap</b-hint>
				</field>
				<field>
								<a>stringProperty5
								<b	map-get-method="getValue"	map-set-method="putValue">customMap
				</field>
</mapping>

Mapping	Class	Level	Properties	to	a	java.util.Map	or	a	Custom	Map	with
unique	Get/Set	methods

Dozer	can	also	map	entire	complex	objects	directly	to	a	java.util.Map	or	a	custom	map	object.	This	example	shows
the	declaration	of	a	mapping	between	a	complex	object	(PropertyToMap)	and	a	java.util.Map.	When	doing	this	you
need	to	explicitly	define	a	unique	map-id	for	the	mapping.	This	is	used	when	determining	which	map	to	use	at	run-
time.	Every	attribute	on	the	PropertyToMap	class	will	be	mapped	to	the	java.util.Map.	You	DO	NOT	need	to	explicitly
define	these	mappings.	Field	exclude	mappings	can	be	used	to	exclude	fields	at	run-time.	If	the	attribute	name	is	not
the	same	as	the	map	key	just	set	the	key	attribute	for	a	custom	field	mapping.	The	mapping	to	stringProperty2	shows
an	example	of	this.

The	second	example	shows	how	to	setup	a	custom	map	object.	The	only	difference	here	is	that	you	need	to	explicitly
define	map-set-method	and	map-get-method	values.	These	correspond	to	the	java.util.Map	get()	and	put()	methods.

<mapping	map-id="myTestMapping">
				<class-a>com.github.dozermapper.core.vo.map.PropertyToMap</class-a>
				<class-b>java.util.Map</class-b>
				<field>
								<a	set-method="addStringProperty2">stringProperty2
								<b	key="myStringProperty">this
				</field>
				<field-exclude>
								<a>excludeMe
								this
				</field-exclude>
</mapping>
<mapping	map-id="myCustomTestMapping">
				<class-a>com.github.dozermapper.core.vo.map.PropertyToMap</class-a>
				<class-b	map-set-method="putValue"	map-get-method="getValue">
						com.github.dozermapper.core.vo.map.CustomMap
		</class-b>
				<field>
								<a	set-method="addStringProperty2">stringProperty2
								<b	key="myStringProperty">this
				</field>
				<field-exclude>
								<a>excludeMe
								this
				</field-exclude>
</mapping>

Map	Backed	Property	Mapping

49

The	example	below	shows	how	to	use	these	mappings.	Notice	that	the	field	mappings	reference	a	map-id.	The	first
field	mapping	will	use	the	myTestMapping	defined	mapping	and	map	accordingly.	Same	goes	with	the	custom
mapping.

<mapping>
				<class-a>com.github.dozermapper.core.vo.map.MapTestObject</class-a>
				<class-b>com.github.dozermapper.core.vo.map.MapTestObjectPrime</class-b>
				<field	map-id="myTestMapping">
								<a>propertyToMap
								propertyToMapMap
				</field>
				<field	map-id="myTestMapping">
								<a>propertyToMapToNullMap
								nullPropertyToMapMap
								<b-hint>java.util.HashMap</b-hint>
				</field>
				<field	map-id="myCustomTestMapping">
								<a>propertyToCustomMap
								propertyToCustomMapMap
				</field>
</mapping>

The	Class	Level	map	backed	mappings	can	also	be	used	as	a	standard	mapping.	For	this	dozer	has	a	new	API.	In
addition	to	the	source	and	destination	classes	you	can	now	pass	in	the	map	reference	Id.

//	Example	1
PropertyToMap	ptm	=	new	PropertyToMap();
ptm.setStringProperty("stringPropertyValue");
ptm.addStringProperty2("stringProperty2Value");
Map	map	=	Mapper.map(ptm,	HashMap.class,	"myTestMapping");

//	Example	2
CustomMap	customMap	=	mapper.map(ptm,	CustomMap.class,	"myCustomTestMapping");

//	Example	3
CustomMap	custom	=	new	CustomMap();
custom.putValue("myKey",	"myValue");
Mapper.map(ptm,	custom,	"myCustomTestMapping");

//	Example	4	-	Map	Back
Map	map	=	new	HashMap();
map.put("stringProperty",	"stringPropertyValue");
PropertyToMap	property	=	mapper.map(map,	PropertyToMap.class,	"myTestMapping");
assertEquals("stringPropertyValue",	property.getStringProperty());

Map	Backed	Property	Mapping

50

Proxy	Objects

Overview

Dozer	supports	mappings	done	on	proxy	objects.	This	is	typically	the	case	when	using	persistence	framework,	which
supports	sophisticated	features	like	lazy-loading.	In	this	case	application	is	working	with	fake	objects,	containing	the
real	objects	encapsulated.	Implementation	of	proxies	is	dependant	on	the	technology	you	use.	Generally	speaking,
there	are	two	popular	libraries	for	creating	Java	proxies	(Cglib	and	Javassist).	However,	how	particular	framework
makes	uses	of	them	could	also	vary.	Dozer	offers	by	default	a	generic	way	to	handle	simple	proxy	scenarios,	both
Javassist	and	Cglib.	However	it	is	strongly	recommended	to	tune	proxy	handling	behavior	for	your	particular	scenario.

Configuration

Proxy	implementation	is	set-up	by	modifying	configuration	file.	Currently,	besides	of	default	behavior,	Hibernate	and
No-Proxy	modes	are	supported.	For	the	full	list	of	the	implementations,	see	the	list	of
com.github.dozermapper.core.util.DozerProxyResolver	interface	implementations.	The	list	could	be	retrieved	from
JavaDocs.

In	case	you	do	not	map	proxied	objects	-	use	NoProxy	resolver,	which	imposes	minimum	performance	overhead.

Custom	Scenarios

For	custom	scenarios	it	is	possible	to	provide	your	own	implementation	of
com.github.dozermapper.core.util.DozerProxyResolver	interface.	It	is	configured	in	the	same	way	as	the	standard
classes.

Proxy	Objects

51

http://cglib.sourceforge.net/
http://www.csg.is.titech.ac.jp/~chiba/javassist/

Custom	Converters
Custom	converters	are	used	to	perform	custom	mapping	between	two	objects.	In	the	Configuration	block,	you	can	add
some	XML	to	tell	Dozer	to	use	a	custom	converter	for	certain	class	A	and	class	B	types.	When	a	custom	converter	is
specified	for	a	class	A	and	class	B	combination,	Dozer	will	invoke	the	custom	converter	to	perform	the	data	mapping
instead	of	the	standard	mapping	logic.

Your	custom	converter	must	implement	the		com.github.dozermapper.core.CustomConverter		interface	in	order	for	Dozer	to
accept	it.	Otherwise	an	exception	will	be	thrown.

Custom	converters	are	shared	across	mapping	files.	This	means	that	you	can	define	them	once	in	a	mapping	file	and
it	will	be	applied	to	all	class	mappings	in	other	mapping	files	that	match	the	Class	A	-	Class	B	pattern.	In	the	example
below,	whenever	Dozer	comes	across	a	mapping	where	the	src/dest	class	match	the	custom	converter	definition,	it
will	invoke	the	custom	converter	class	instead	of	performing	the	typical	mapping.

<?xml	version="1.0"	encoding="UTF-8"?>
<mappings	xmlns="http://dozermapper.github.io/schema/bean-mapping"
										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
										xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping	http://dozermapper.github.io/schema/bean-ma
pping.xsd">
				<configuration>
								<custom-converters>
												<!--	these	are	always	bi-directional	-->
												<converter	type="com.github.dozermapper.core.converters.TestCustomConverter">
																<class-a>com.github.dozermapper.core.vo.CustomDoubleObject</class-a>
																<class-b>java.lang.Double</class-b>
												</converter>
												<!--	You	are	responsible	for	mapping	everything	between
											ClassA	and	ClassB	-->
												<converter	type="com.github.dozermapper.core.converters.TestCustomHashMapConverter">
																<class-a>
										com.github.dozermapper.core.vo.TestCustomConverterHashMapObject
								</class-a>
																<class-b>
										com.github.dozermapper.core.vo.TestCustomConverterHashMapPrimeObject
								</class-b>
												</converter>
								</custom-converters>
				</configuration>
</mappings>

Custom	converters	can	also	be	specified	at	the	individual	field	level.	In	the	example	below,	Dozer	will	invoke	the
custom	converter	to	perform	the	field	mapping.

<mapping>
				<class-a>com.github.dozermapper.core.vo.SimpleObj</class-a>
				<class-b>com.github.dozermapper.core.vo.SimpleObjPrime2</class-b>
				<field	custom-converter="com.github.dozermapper.core.converters.StringAppendCustomConverter">
								<a>field1
								field1Prime
				</field>
</mapping>

Custom	converter	'instances'	can	be	reused	at	the	individual	field	level.	In	the	example	below,	Dozer	will	invoke	the
custom	converter	to	perform	the	field	mapping.

<mapping>
				<class-a>com.github.dozermapper.core.vo.SimpleObj</class-a>
				<class-b>com.github.dozermapper.core.vo.SimpleObjPrime2</class-b>

Custom	Converters

52

				<field	custom-converter-id="CustomConverterWithId">
								<a>field1
								field1Prime
				</field>
</mapping>

	CustomConverter		instances	can	be	provided	during	configuration	of		Mapper		via
	DozerBeanMapperBuilder#withCustomConverter(..)		method.

<?xml	version="1.0"	encoding="UTF-8"?>
<beans	default-lazy-init="false">
				<bean	id="com.github.dozermapper.core.Mapper"	class="com.github.dozermapper.core.DozerBeanMapper">
								<property	name="mappingFiles">
												<list>
																<value>dozerBeanMapping.xml</value>
																<value>injectedCustomConverter.xml</value>
												</list>
								</property>
								<property	name="customConvertersWithId">
												<map>
																<entry	key="CustomConverterWithId"	ref="configurableConverterBeanInstance1"	/>
																<entry	key="CustomConverterWithId2"	ref="configurableConverterBeanInstance2"	/>
												</map>
								</property>
				</bean>
</beans>

Sample	custom	converter	implementation:

Note:	Custom	Converters	get	invoked	when	the	source	value	is		null	,	so	you	need	to	explicitly	handle		null		values
in	your	custom	converter	implementation.

import	com.github.dozermapper.core.CustomConverter;
import	com.github.dozermapper.core.MappingException;

public	class	TestCustomConverter	implements	CustomConverter	{

				@Override
				public	Object	convert(Object	existingDestinationFieldValue,	Object	sourceFieldValue,	Class<?>	destinationClass,	Class<
?>	sourceClass)	{
								if	(sourceFieldValue	==	null)	{
												return	null;
								}

								CustomDoubleObject	dest;
								if	(source	instanceof	Double)	{
												//	check	to	see	if	the	object	already	exists
												if	(destination	==	null)	{
																dest	=	new	CustomDoubleObject();
												}	else	{
																dest	=	(CustomDoubleObject)destination;
												}

												dest.setTheDouble(((Double)source).doubleValue());

												return	dest;
								}	else	if	(source	instanceof	CustomDoubleObject)	{
												double	sourceObj	=	((CustomDoubleObject)source).getTheDouble();
												return	new	Double(sourceObj);
								}	else	{
												throw	new	MappingException("Converter	TestCustomConverter	"
																																							+	"used	incorrectly.	Arguments	passed	in	were:"
																																							+	destination
																																							+	"	and	"
																																							+	source);

Custom	Converters

53

								}
				}
}

CustomConverters	can	also	be	injected	into	the		Mapper		if	you	need	to	do	some	manipulation	with	them	before	they
are	used	in	dozer.

<?xml	version="1.0"	encoding="UTF-8"?>
<beans	default-lazy-init="false">
				<bean	id="com.github.dozermapper.core.Mapper"	class="com.github.dozermapper.core.DozerBeanMapper">
								<property	name="mappingFiles">
												<list>
																<value>dozerBeanMapping.xml</value>
																<value>injectedCustomConverter.xml</value>
												</list>
								</property>
								<property	name="customConverters">
												<list>
																<ref	bean="customConverterTest"	/>
												</list>
								</property>
				</bean>
				<!--	custom	converter	-->
				<bean	id="customConverterTest"	class="com.github.dozermapper.core.converters.InjectedCustomConverter">
								<property	name="injectedName">
												<value>injectedName</value>
								</property>
				</bean>
</beans>

Support	for	Array	Types

You	can	specify	a	custom	converter	for	Array	types.	For	example,	if	you	want	to	use	a	custom	converter	for	mapping
between	an	array	of	objects	and	a	String	you	would	use	the	following	mapping	notation.	Dozer	generically	uses
	ClassLoader.loadClass()		when	parsing	the	mapping	files.	For	arrays,	java	expects	the	class	name	in	the	following
format:		[Lcom.github.dozermapper.core.vo.SimpleObj	;

<converter	type="com.github.dozermapper.core.converters.StringAppendCustomConverter">
				<class-a>[Lcom.github.dozermapper.core.vo.SimpleObj;</class-a>
				<class-b>java.lang.String</class-b>
</converter>

Support	for	primitives

You	can	specify	a	custom	converter	for	primitive	types.	Just	use	the	primitive	wrapper	class	when	defining	the	custom
converter	mapping.	In	the	following	example,	Dozer	will	use	the	specified	custom	converter	when	mapping	between
SomeObject	and	the	int	primitive	type.	Note	that	Dozer	will	also	use	the	custom	converter	when	mapping	between
	SomeObject		and	the		Integer		wrapper	type.

<converter	type="somePackage.SomeCustomConverter">
				<class-a>somePackage.SomeObject</class-a>
				<class-b>java.lang.Integer</class-b>
</converter>

Configurable	Custom	Converters

Custom	Converters

54

You	can	define	a	custom	converter,	which	can	be	configured	from	mappings	via	configuration	parameter.	In	this	case
you	should	implement		ConfigurableCustomConverter		interface	instead	of	usual		CustomConverter	.	Configurable	converter
has	additional	attribute	provided	in	runtime	-	param.	Parameter	is	provided	using		custom-converter-param		attribute.

<mapping>
				<class-a>com.github.dozermapper.core.vo.BeanA</class-a>
				<class-b>com.github.dozermapper.core.vo.BeanB</class-b>
				<field	custom-converter="com.github.dozermapper.core.converters.MathOperationConverter"	custom-converter-param="+">
								<a>amount
								amount
				</field>
</mapping>

Configurable	custom	converter	should	be	used	when	you	have	similar	behaviour	in	many	cases,	which	can	be
parametrized,	but	the	number	of	combinations	is	too	high	to	do	simple	Custom	Converter	subclassing.

import	com.github.dozermapper.core.ConfigurableCustomConverter;
import	com.github.dozermapper.core.MappingException;

public	class	MathOperationConverter	implements	ConfigurableCustomConverter	{

				private	String	parameter;

				@Override
				public	void	setParameter(String	parameter)	{
								this.parameter	=	parameter;
				}

				@Override
				public	Object	convert(Object	existingDestinationFieldValue,	Object	sourceFieldValue,	Class<?>	destinationClass,	Class<
?>	sourceClass)	{
								Integer	source	=	(Integer)sourceFieldValue;
								Integer	destination	=	(Integer)existingDestinationFieldValue;

								if	("+".equals(parameter))	{
												return	destination.intValue	+	source.intValue();
								}

								if	("-".equals(parameter))	{
												return	destination.intValue	-	source.intValue();
								}

								throw	new	MappingException("Converter	MathOperationConverter	"
																																			+	"used	incorrectly.	Arguments	passed	in	were:"
																																			+	destination
																																			+	",	"
																																			+	source
																																			+	"	and	"
																																			+	parameter);
				}
}

New	Custom	Converter	API

While	providing	great	deal	of	flexibility	Custom	Converter	API	described	above	is	written	on	fairly	low	level	of
abstraction.	This	results	in	converter,	which	code	is	difficult	to	understand	and	to	reuse	in	other	ways	than	plugging
into	Dozer	mapping.	However	it	is	not	uncommon	situation	when	the	same	conversion	logic	should	be	called	from	a
place	other	than	bean	mapping	framework.	version	of	Dozer	gets	shipped	with	new	-	cleaner	API	for	defining	custom
converter,	which	gives	you	more	obvious	API	while	taking	away	certain	part	of	control	of	the	executions	flow.	The
following	example	demonstrates	simple,	yet	working	converter	using	new	API.

Custom	Converters

55

import	com.github.dozermapper.core.DozerConverter;

public	class	NewDozerConverter	extends	DozerConverter<String,	Boolean>	{

				public	NewDozerConverter()	{
								super(String.class,	Boolean.class);
				}

				@Override
				public	Boolean	convertTo(String	source,	Boolean	destination)	{
								if	("yes".equals(source))	{
												return	Boolean.TRUE;
								}	else	if	("no".equals(source))	{
												return	Boolean.FALSE;
								}
								throw	new	IllegalStateException("Unknown	value!");
				}

				@Override
				public	String	convertFrom(Boolean	source,	String	destination)	{
								if	(Boolean.TRUE.equals(source))	{
												return	"yes";
								}	else	if	(Boolean.FALSE.equals(source))	{
												return	"no";
								}
								throw	new	IllegalStateException("Unknown	value!");
				}
}

Note	that	Java	5	Generics	are	supported	and	you	do	not	need	to	cast	source	object	to	desired	type	as	previously.

Data	Structure	Conversions

There	are	cases	where	it	is	required	to	perform	programmatic	data	structure	conversion,	say	copy	each	odd	element
in	a	list	as	map	key,	but	each	even	as	map	value.	In	this	case	it	is	needed	to	define	transformation	of	the	structure
while	relying	on	usual	Dozer	mapping	support	for	individual	values.	For	this	purposes	it	is	possible	to	use		MapperAware	
interface,	which	injects	current	mapper	instance	inside	custom	converter.

import	java.util.HashMap;
import	java.util.List;
import	java.util.Map;

import	com.github.dozermapper.core.DozerConverter;
import	com.github.dozermapper.core.Mapper;
import	com.github.dozermapper.core.MapperAware;

public	class	Converter	extends	DozerConverter<List,	Map>	implements	MapperAware	{

				private	Mapper	mapper;

				public	Converter()	{
								super(List.class,	Map.class);
				}

				@Override
				public	void	setMapper(Mapper	mapper)	{
								this.mapper	=	mapper;
				}

				@Override
				public	Map	convertTo(List	source,	Map	destination)	{
								Map	originalToMapped	=	new	HashMap();
								for	(Source	item	:	source)	{
												Target	mappedItem	=	mapper.map(item,	Target.class);

Custom	Converters

56

												originalToMapped.put(item,	mappedItem);
								}
								return	originalToMapped;
				}

				@Override
				public	List	convertFrom(Map	source,	List	destination)	{
								throw	new	IllegalStateException("Not	implemented");
				}
}

Custom	Converters

57

Custom	Bean	Factories
You	can	configure	Dozer	to	use	custom	bean	factories	to	create	new	instances	of	destination	data	objects	during	the
mapping	process.	By	default	Dozer	just	creates	a	new	instance	of	any	destination	objects	using	a	default	constructor.
This	is	sufficient	for	most	use	cases,	but	if	you	need	more	flexibility	you	can	specify	your	own	bean	factories	to
instantiate	the	data	objects.

Your	custom	bean	factory	must	implement	the		com.github.dozermapper.core.BeanFactory		interface.	By	default	the	Dozer
mapping	engine	will	use	the	destination	object	class	name	for	the	bean	id	when	calling	the	factory.

public	interface	BeanFactory	{
		public	Object	createBean(Object	source,	Class	sourceClass,
						String	targetBeanId,	BeanContainer	beanContainer);
}

Next,	in	your	Dozer	mapping	file(s)	you	just	need	to	specify	a		bean-factory		xml	attribute	for	any	mappings	that	you
want	to	use	a	custom	factory.

In	the	following	example,	the		SampleCustomBeanFactory		will	be	used	to	create	any	new	instances	of	the
	InsideTestObjectPrime		java	bean	data	object.

<mapping>
				<class-a>com.example.vo.InsideTestObject</class-a>
				<class-b	bean-factory="com.example.factories.SomeCustomBeanFactory">
								com.example.vo.InsideTestObjectPrime
				</class-b>
</mapping>

If	your	factory	looks	up	beans	based	on	a	different	id	than	class	name,	you	can	specify	a		factory-bean-id		xml
attribute.	At	runtime	the	specified		factory-bean-id		will	be	passed	to	the	factory	instead	of	class	name.

<mapping>
				<class-a>com.example.vo.InsideTestObject</class-a>
				<class-b	bean-factory="com.example.factories.SomeCustomBeanFactory"	factory-bean-id="someBeanLookupId">
								com.example.vo.InsideTestObjectPrime
				</class-b>
</mapping>

Specifying	Default	Factories

Alternatively,	bean	factories	can	be	specified	in	the	default	configuration	section	of	any	Dozer	mapping	file(s).	The
default	factory	would	be	used	for	any	mappings	in	that	file.

<configuration>
				<stop-on-errors>true</stop-on-errors>
				<wildcard>true</wildcard>
				<bean-factory>com.example.factories.SomeDefaultBeanFactory
		</bean-factory>
</configuration>

Bean	factories	can	also	be	specified	at	the	mapping	level.	The	specified	factory	would	be	used	for		class-a		and		class-
b	.

<mapping	bean-factory="com.example.factories.SomeCustomBeanFactory">
				<class-a>com.example.vo.TestObject</class-a>

Custom	Bean	Factories

58

				<class-b>com.example.vo.TestObjectPrime</class-b>
</mapping>

Spring	bean	factory	injection

Bean	factories	can	be	injected	via	Spring	or	similar	inversion	of	control	techniques.

<beans>
				<bean	id="com.github.dozermapper.core.Mapper"	class="com.github.dozermapper.core.DozerBeanMapper">
								<property	name="mappingFiles">
												<list>
																<value>dozerBeanMapping.xml</value>
												</list>
								</property>
								<property	name="factories">
												<map>
																<!--	the	key	matches	the	name	of	the	factory	in	the
													dozerBeanMapping.xml	file	-->
																<entry	key="com.github.dozermapper.core.factories.SampleCustomBeanFactory">
																				<ref	bean="sampleCustomBeanFactory"	/>
																</entry>
																<!--	more	factories	can	be	supplied	with	additional
													entry's	-->
												</map>
								</property>
				</bean>
				<bean	id="sampleCustomBeanFactory"	class="com.github.dozermapper.core.factories.SampleCustomBeanFactory"	/>
</beans>

By	defining	your	factories	as	Spring	beans	you	can	then	inject	them	into	the		Mapper		instance.

Custom	Bean	Factories

59

Custom	Create	Methods
You	can	configure	Dozer	to	use	custom	static	create	methods	to	create	new	instances	of	destination	data	objects
during	the	mapping	process.	This	can	either	be	set	at	the	field	level	or	class	level.

<mapping>
				<class-a	create-method="someCreateMethod">
				com.github.dozermapper.core.vo.InsideTestObject
		</class-a>
				<class-b>com.github.dozermapper.core.vo.InsideTestObjectPrime</class-b>
				<field>
								<a>label
								labelPrime
				</field>
</mapping>

Specifying	a	custom	create	method	at	the	Field	level…​.

<mapping>
				<class-a>com.github.dozermapper.core.vo.TestObject</class-a>
				<class-b>com.github.dozermapper.core.vo.TestObjectPrime</class-b>
				<field>
								<a>createMethodType
								<b	create-method="someCreateMethod">createMethodType
				</field>
</mapping>

It	is	also	possible	to	reference	different	class	with	static	factory	method.	This	is	done	by	providing	fully	qualified	type
name	and	method	name	separated	by	dot.

<b	create-method="com.github.dozermapper.core.factory.Factory.create">field

Custom	Create	Methods

60

Custom	get()	set()	Methods

Mapping	a	field	with	no	get()	or	set()	methods

Use	the	attribute	is-accessible	to	declare	that	the	field	can	be	accessed	directly.	Dozer	is	able	to	access	private
properties	that	do	not	have	getter	or	setter	methods.

<field>
				<a>fieldAccessible
				<b	is-accessible="true">fieldAccessible
</field>

Custom	Set()	and	Get()	methods	(bi-directional)

For	those	beans	that	might	have	unorthodox	getter	and	setter	methods,	Dozer	support	user	specified	setter	and	getter
methods.	To	make	a	bi-directional	mapping	in	this	case,	look	at	the	following	example	below.	The	source	field	in
element	A	specifies	a	custom	setter	method	and	getter	method	using	attributes.

<field>
				<a	set-method="placeValue"	get-method="buildValue">value
				value
</field>

In	this	case	we	are	mapping	a	String	to	an	ArrayList	by	calling	the	addIntegerToList()	method.	Note	that	this	is	defined
as	a	one-way	field	type	since	we	can	not	map	an	ArrayList	to	a	String.

<!--	we	can	not	map	a	ArrayList	to	a	String,	hence	the	one-way	mapping	-->
<field	type="one-way">
				<a>integerStr
				<b	set-method="addIntegerToList">integerList
</field>

Overloaded	Set()	methods	(bi-directional)

Sometimes	set()	methods	can	be	overloaded.	In	order	to	chose	the	correct	one	you	can	add	the	class	type	as	a
parameter.

<field>
				<a>overloadGetField
				<b	set-method="setOverloadSetField(java.util.Date)">
								overloadSetField
				
</field>

Iterate	Method	Mapping	(bi-directional)

Dozer	also	supports	iterate	method	level	mapping.	In	the	following	example	the	List	appleComputers	will	be	iterated
through	and	for	each	object	the	method	addComptuer	will	be	called.	Any	field	that	is	denoted	as	type=iterate	requires
a	hint.	The	get()	method	can	return	an	Array,	List,	or	Iterator.

<field>
				<a>appleComputers
				<b	set-method="addComputer"	type="iterate">computers

Custom	get()	set()	Methods

61

				<b-hint>com.github.dozermapper.core.vo.AppleComputer</b-hint>
</field>

Below	is	an	example	with	iterate	methods	on	both	fields.

<field>
				<a	set-method="addCar"	get-method="myIterateCars"	type="iterate">iterateCars
				<b	set-method="addIterateCar"	type="iterate">iterateCars
				<a-hint>com.github.dozermapper.core.vo.Car</a-hint>
				<b-hint>com.github.dozermapper.core.vo.Car</b-hint>
</field>

Custom	get()	set()	Methods

62

Expression	Language

Usage

Dozer	provides	optional	support	for	standard	java	expression	language	(javax.el).

Current	support	for	expressions	is	start-up	time	only.	Expressions	are	not	resolved	during	each	mapping,	but	rather
during	mapping	loading	time.	Each	attribute	or	node	value	can	contain	a	valid	EL	expression	${}.

Dozer	supports	any	EL	implementation	written	against	javax.el	standard	API.	Functionality	is	tested	with	'glassfish'
internally,	but	other	EL	providers	should	work	as	well.

You	can	define	global	variables	for	the	mapper	in	variables	configuration	block.

<configuration>
			<wildcard>true</wildcard>
			<variables>
						<variable	name="type_name">com.github.dozermapper.core.sample.MyType</variable>
			</variables>
</configuration>
<mapping>
			<class-a>${type_name}</class-a>
			<class-b>com.github.dozermapper.core.sample.OtherType</class-b>
</mapping>

Enabling

EL	support	is	an	optional	feature.	To	enable	it,	you	must	add	the	below	dependencies	to	your	classpath:

<dependency>
				<groupId>javax.el</groupId>
				<artifactId>javax.el-api</artifactId>
				<version>3.0.0</version>
</dependency>
<dependency>
				<groupId>org.glassfish</groupId>
				<artifactId>javax.el</artifactId>
				<version>3.0.0</version>
</dependency>

It	is	this	enabled	on	the	Mapper	by	the	below	fluent	construct:

Mapper	mapper	=	DozerBeanMapperBuilder.create()
								.withMappingFiles(mappingFiles)
								.withELEngine(new	DefaultELEngine())
								.build();

Expression	Language

63

Logging
The	logging	facade	framework	in	Dozer	is	SLF4J.	It	replaced	Commons	Logging,	which	was	used	in	project	previously
until	version	5.3.

Please	refer	to	SLF4J	Documentation	for	more	information	on	setting	up	and	configuring	different	logging
implementations.

Logging

64

http://www.slf4j.org/
http://www.slf4j.org/docs.html

Event	Listening
By	implementing	the		EventListener		interface	dozer	allows	you	to	listen	to	4	different	events:

	mappingStarted	

	mappingFinished	

	preWritingDestinationValue	

	postWritingDestinationValue	

An		Event		object	is	passed	into	these	callback	methods	which	stores	information	about	the		ClassMap	,		FieldMap	,
source	object,	destination	object,	and	destination	value.	This	will	allow	you	to	extend	Dozer	and	manipulate	mapped
objects	at	run-time.	The	interface	is	shown	below:

public	interface	EventListener	{

				publicvoid	onMappingStarted(Event	event);

				public	void	onPreWritingDestinationValue(Event	event);

				public	void	onPostWritingDestinationValue(Event	event);

				public	void	onMappingFinished(Event	event);
}

The	listeners	that	you	create	can	be	injected	into	the		Mapper		using	an	IOC	like	Spring	or	set	directly	during		Mapper	
instance	configuration	using		DozerBeanMapperBuilder#withEventListener(..)		method.	Below	is	an	example	using	Spring	to
inject	an	event	listener:

<?xml	version="1.0"	encoding="UTF-8"?>
<beans	default-lazy-init="false">
				<bean	id="EventMapper"	class="com.github.dozermapper.core.DozerBeanMapper">
								<property	name="mappingFiles">
												<list>
																<value>dozerBeanMapping.xml</value>
												</list>
								</property>
								<property	name="eventListeners">
												<list>
																<ref	bean="eventTestListener"	/>
												</list>
								</property>
				</bean>
				<bean	id="eventTestListener"	class="com.github.dozermapper.core.event.EventTestListener"	/>
</beans>

Event	Listening

65

Querying	mapping	metadata
This	section	will	cover	the	mapping	metadata	interface.	It	provides	easy	to	use	read-only	access	to	all	important
properties	or	aspects	of	the	currently	active	mapping	definitions.

The	following	sections	will	give	some	code	examples	how	to	use	the	mapping	query	interfaces.	The	most	important
interface	in	the	whole	process	is		com.github.dozermapper.core.metadata.MappingMetadata	.	An	instance	can	be	acquired	by
calling	the		getMappingMetadata()		method	of	the		Mapper		instance.

Consider	the	following	mapping	file:

<?xml	version="1.0"	encoding="UTF-8"?>
<mappings	xmlns="http://dozermapper.github.io/schema/bean-mapping"
										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
										xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping	http://dozermapper.github.io/schema/bean-ma
pping.xsd">
				<mapping>
								<class-a>com.github.dozermapper.core.vo.ClassA</class-a>
								<class-b>com.github.dozermapper.core.vo.ClassB</class-b>
								<field>
												<a>fieldA
												fieldB
								</field>
				</mapping>
</mappings>

To	begin	querying	the	mapping	definitions	the	following	code	is	needed:

Mapper	mapper	=	DozerBeanMapperBuilder.create()
								.withMappingFiles(listOfFiles)
								.build();
MappingMetadata	mapMetadata	=	mapper.getMappingMetadata();

Now	that	a	reference	to	MappingMetadata	is	obtained	we	can	start	querying	for	a	certain	class	mapping	definition:

try	{
		ClassMappingMetadata	classMappingMetadata	=
						mapMetadata.getClassMapping(ClassA.class,	ClassB.class);
}	catch	(MetadataLookupException	e)	{
		//	couldn't	find	it
}

When	holding	a	reference	to	a	ClassMappingMetadata	interface,	queries	for	individual	field	mappings	can	be
executed:

try	{
		FieldMappingMetadata	fieldMetadata	=	classMetadata.getFieldMappingBySource("fieldA");
		//	Destination:	fieldB
		System.out.println("Destination:	"	+	fieldMetadata.getDestinationName());
}	catch	(MetadataLookupException	e)	{
		//	couldn't	find	it
}

For	extensive	documentation	on	the	different	interfaces	please	refer	to	the	JavaDoc.

Metadata	Query	Interface

66

Metadata	Query	Interface

67

Spring	Framework	Integration
We	provide	the		dozer-spring4		for	integrating	spring	application.	If	you	are	using	Apache	Maven,	simply	copy-paste
this	dependency	to	your	project.

pom.xml

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-core</artifactId>
				<version>{dozer-version}</version>
</dependency>
<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-spring4</artifactId>
				<version>{dozer-version}</version>
</dependency>

Configuration

Add	the		DozerBeanMapperFactoryBean		to	your	Spring	configuration	file.	The		mappingFiles		property	is	where	you	should
specify	any	custom	dozer	mapping	files	that	you	have	created.	This	list	can	be	empty	if	you	don’t	have	any	custom
mappings.	It	is	also	possible	to	set	custom	event	listeners	and	bean	factories.

Important

You	should	define	the	Dozer	mapper	bean	is	defined	as	singleton="true".	You	should	configure
the	Mapper	instance(s)	this	way	so	that	you	do	not	have	to	reload	and	reinitialize	the	mapping
files	for	each	individual	mapping	during	the	lifecycle	of	your	app.	Reinitializing	the	mapping	files
for	each	mapping	would	be	inefficient	and	unnecessary.	The		DozerBeanMapper		class	is	thread	safe.

XML	based	configuration

Note	that	this	Factory	Bean	supports	Spring	Resources,	which	means	that	you	could	load	mapping	Xml	files	by
classpath	mask	for	example.

<bean	id="dozerMapper"	class="com.github.dozermapper.spring.DozerBeanMapperFactoryBean">
				<property	name="mappingFiles"	value="classpath*:/*mapping.xml"	/>
				<property	name="customConverters">
								<list>
												<bean	class="com.github.dozermapper.core.converters.CustomConverter"	/>
								</list>
				</property>
				<property	name="eventListeners">
								<list>
												<bean	class="com.github.dozermapper.core.listeners.EventListener"	/>
								</list>
				</property>
				<property	name="factories">
								<map>
												<entry	key="id"	value-ref="bean-factory-ref"	/>
								</map>
				</property>
</bean>

Alternatively,	you	can	define	the		DozerBeanMapper		using	the		dozer		name	space	as	follow:

<beans	xmlns="http://www.springframework.org/schema/beans"
							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
							xmlns:dozer="http://dozermapper.github.io/schema/dozer-spring"

Spring	Integration

68

https://maven.apache.org/

							xsi:schemaLocation="
									http://www.springframework.org/schema/beans
									http://www.springframework.org/schema/beans/spring-beans.xsd
									http://dozermapper.github.io/schema/dozer-spring
									https://dozermapper.github.io/schema/dozer-spring.xsd
							">

				<dozer:mapper	id="dozerMapper"/>

</beans>

Java	based	configuration

When	using	Java	configuration,	bean	definition	is	as	follows:

@Configuration
public	class	DozerConfig	{
				@Bean
				public	DozerBeanMapperFactoryBean	dozerMapper(
								ResourcePatternResolver	resourcePatternResolver)	throws	IOException	{
								DozerBeanMapperFactoryBean	factoryBean	=	new	DozerBeanMapperFactoryBean();
								factoryBean.setMappingFiles(
												resourcePatternResolver.getResources("classpath*:/*mapping.xml"));
								//	...
								return	factoryBean;
				}
}

How	to	use	in	your	application

Using	Spring	to	retrieve	the	Dozer	Mapper…​…​

Look-up	based	usage

You	can	use	the	Dozer	Mapper	that	looked	up	from	the	Spring		ApplicationContext	(BeanFactory).

Mapper	dozerMapper	=	applicationContext.getBean("dozerMapper",	Mapper.class);
DestinationObject	destObject	=	dozerMapper.map(sourceObject,	DestinationObject.class);

Injection	based	usage

Alternatively,	you	can	use	the	Dozer	Mapper	that	injected	to	your	component	by	Spring	DI	container.

@Component
public	class	YourComponent	{
				private	final	Mapper	dozerMapper;
				public	YourComponent(Mapper	dozerMapper)	{
								this.dozerMapper	=	dozerMapper;
				}
				public	void	anyMethod()	{
								//	...
								DestinationObject	destObject	=
												dozerMapper.map(sourceObject,	DestinationObject.class);
								//	...
				}
}

How	to	use	in	Spring	Boot	Application

Please	see	Spring	Boot	Integration	section.

Spring	Integration

69

Spring	Integration

70

Spring	Boot	Integration
We	provide	the		dozer-spring-boot-starter		for	integrating	spring	boot	application	since	6.2.0.	If	you	are	using	Apache
Maven,	simply	copy-paste	this	dependency	to	your	project.

Note For	details	for	Spring	Framewrok	Integration,	please	see	here.

pom.xml

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-spring-boot-starter</artifactId>
				<version>{dozer-version}</version>
</dependency>

You	can	specify	any	custom	dozer	mapping	files	in	your	application	properties	or	yml.

application.properties

dozer.mapping-files=classpath*:/*mapping.xml

application.yml

dozer:
		mapping-files:	classpath*:/*mapping.xml

Spring	Boot	Integration

71

https://maven.apache.org/

3rd	Party	Object	Factories
Dozer	supports	mapping	of	plain	Java	objects	to	frameworks	that	require	instantiation	of	objects	via	certain	convention
of	calling	factory	methods.	To	reproduce	the	expected	behavior	custom	bean	factories	should	be	used.

Mapping	JAXB	Objects

Dozer	has	support	for	mapping	POJOs	to	JAXB	objects.	Use	the	JAXBBeanFactory	for	any	JAXB	objects	you	want
create.

<mapping>
				<class-a>com.github.dozermapper.core.vo.TestObject</class-a>
				<class-b	bean-factory="com.github.dozermapper.core.factory.JAXBBeanFactory">
				com.github.dozermapper.core.vo.jaxb.employee.Employee
		</class-b>
				<field>
								<a>name
								firstName
				</field>
				<field>
								<a>street
								address.street
				</field>
</mapping>

JAXB

72

Frequently	Asked	Questions

Common

What	types	of	data	objects	are	supported?

Will	Dozer	automatically	perform	data	type	conversions?

Does	Dozer	automatically	map	fields	with	matching	property	names?

Is	Dozer	recursive?

Will	the	getter	and	setter	methods	be	invoked	when	fields	are	mapped?

Are	Collections	and	Arrays	supported?

Are	Map	type	objects(i.e	HashMap)	supported?

Are	abstract	classes,	inheritance,	and	interface	mapping	supported?

Can	Dozer	be	configured	via	Spring?

Which	types	of	data	mappings	do	I	need	a	custom	xml	mapping	definition	for?

If	my	src	and	dest	object	have	all	matching	attribute	names,	do	I	need	to	specify	any	xml	mapping	definitions	at
all?

For	mappings	that	require	an	xml	mapping	definition,	is	the	mapping	definition	bi-directional,	or	do	I	need	2	xml
definitions	if	I	need	to	map	the	two	objects	both	ways?

How	are	the	custom	xml	mapping	files	loaded?

Can	I	load	a	mapping	file	that	is	not	in	the	classpath?

How	can	I	tell	if	Dozer	is	initializing	correctly	and	loading	my	xml	mapping	files?

How	does	Dozer	perform?

Which	JDK	versions	are	supported?

Is	Dozer	in	the	maven	repository?

Is	Dozer	good	for	the	environment?

Advanced

Can	I	implement	custom	mapping	logic	between	2	data	types	and	have	Dozer	invoke	this	custom	logic	when	it’s
performing	mappings?

Can	I	map	one	field	into	another	field	that	is	nested	n	layers	deep	in	the	destination	object?

How	do	I	map	multiple	fields	to	a	single	field?

If	I	am	mapping	data	objects	that	have	bi-directional	relationships,	will	it	result	in	an	infinite	loop	and	eventual
stack	overflow	error?

How	do	I	map	an	object	contained	in	a	collection	to	a	field?

How	do	I	map	a	Complex	object	to	a	HashMap	and	vice	versa?

How	do	I	map	fields	that	don’t	have	corresponding	getter/setter	methods?

FAQ

73

Some	of	my	data	objects	don’t	have	public	constructors.	Does	Dozer	support	this	use	case?

Does	Dozer	support	JDK	1.5	enums?

Does	Dozer	support	JAXB	generated	data	objects?

Is	there	an	Eclipse	plugin	or	visual	editor	for	Dozer?

When	mapping	collections,	how	do	I	tell	Dozer	what	type	of	data	objects	I	want	in	the	destination	collection?

How	can	I	tell	Dozer	to	bypass	mapping	null	or	empty	string	values?

Tips,	Tricks,	and	Suggestions

Should	I	encapsulate	logic	that	copies	data	between	objects?

Should	I	write	unit	tests	for	data	mapping	logic	that	I	use	Dozer	to	perform?

Should	the	Dozer	mapper	be	configured	as	a	Singleton?

Is	it	better	to	have	1	large	xml	mapping	file	or	to	have	multiple	smaller	mapping	files?

What	are	the	best	ways	to	debug	Dozer?

What	is	the	best	way	to	setup	the	global	configuration?

What	is	the	best	way	to	submit	a	bug,	feature	request,	or	patch?

Answers

What	types	of	data	objects	are	supported?

Dozer	uses	reflection	to	access	data	object	properties,	so	it	is	designed	to	work	with	data	objects	that	have
corresponding	getter	and	setter	methods	for	its	fields.	For	example,	a	data	object	that	has	a	field	named	"message"
should	have	getMessage	and	setMessage	methods.	Data	objects	that	don’t	follow	this	pattern	are	also	supported,	but
will	most	likely	require	a	custom	mapping	definition.	For	these	unorthodox	data	objects,	you	can	tell	Dozer	to	directly
access	fields(including	private)	and/or	explicitly	specify	which	get/set	methods	to	use.

Will	Dozer	automatically	perform	data	type	conversions?

Yes.	Most	scenarios	are	supported	out	of	the	box.	These	include	primitives,	Java	Wrapper	Objects,	Number
subclasses,	Dates,	Calendar,	Collections,	Arrays,	Maps,	and	Complex	types

Does	Dozer	automatically	map	fields	with	matching	property	names?

Yes.	All	fields	with	matching	property	names	are	implicitly	mapped.	It	would	be	atypical	usage,	but	you	could	suppress
this	behavior	by	setting	wilcard="false".

Is	Dozer	recursive?

Yes.	Dozer	recursively	maps	the	entire	object	graph	for	all	fields.

Will	the	getter	and	setter	methods	be	invoked	when	fields	are	mapped?

Yes.	You	can	bypass	this	default	behavior	by	explicitly	specifying	is-accessible="true"	for	any	of	your	mappings.	If	is-
accessible	is	specified,	the	field(including	private	fields)	is	accessed	directly	and	the	getter/setter	methods	are
bypassed.	It	is	not	recommended	that	you	set	is-accessible="true",	unless	you	are	dealing	with	an	unorthodox	data

FAQ

74

object	that	does	not	contain	any	getter	or	setter	methods.

Are	Collections	and	Arrays	supported?

Yes.	Dozer	automatically	maps	between	collection	types	and	automatically	performs	any	type	conversion.

Are	Map	type	objects(i.e	HashMap)	supported?

Yes.	All	Java	Map	data	types	are	supported	in	addition	to	any	Custom	map	data	types.

Are	abstract	classes,	inheritance,	and	interface	mapping	supported?

Yes.

Can	Dozer	be	configured	via	Spring?

Yes.	Refer	to	Spring	Integration	section	of	the	documentation.

Which	types	of	data	mappings	do	I	need	a	custom	xml	mapping	definition
for?

Only	fields	that	can’t	be	implicitly	mapped	by	matching	on	field	name,	need	a	custom	xml	mapping	definition.	Ideally,
the	vast	majority	of	your	field	mappings	can	be	performed	automatically	and	only	the	few	exceptional	cases	will	need
an	explicit	field	mapping	in	the	xml	mapping	file.

If	my	src	and	dest	object	have	all	matching	attribute	names,	do	I	need	to
specify	any	xml	mapping	definitions	at	all?

Nope.	Just	invoke	the	mapper.	You	don’t	need	any	explicit	xml	mapping	entries	for	this	combination	of	source	and
destination	object.

For	mappings	that	require	an	xml	mapping	definition,	is	the	mapping
definition	bi-directional,	or	do	I	need	2	xml	definitions	if	I	need	to	map	the	two
objects	both	ways?

All	mapping	definitions	are	bi-directional,	so	you	only	need	one	mapping	definition.	You	can	map	a	-→	b	and	b-→	a
using	this	single	mapping	definition.

How	are	the	custom	xml	mapping	files	loaded?

Dozer	will	search	the	entire	classpath	looking	for	the	specified	file(s).

Can	I	load	a	mapping	file	that	is	not	in	the	classpath?

Yes,	you	can	load	files	from	outside	the	classpath	by	prepending	"file:"	to	the	resource	name.	Ex)
"file:c:\somedozermapping.xml"

How	can	I	tell	if	Dozer	is	initializing	correctly	and	loading	my	xml	mapping
files?

Set	the	-Ddozer.debug	system	property.	If	this	is	set,	Dozer	initialization	information	is	also	sent	to	System.out.	If	you
are	familiar	with	log4j,	this	is	similar	to	the	-Dlog4j.debug	system	property

FAQ

75

How	does	Dozer	perform?

We	believe	Dozer	performs	very	well	and	performance	is	a	high	priority	for	us.	We	have	spent	a	significant	amount	of
time	profiling	the	code	and	optimizing	bottlenecks.

Performance	is	going	to	depend	on	the	complexity	of	the	use	case	and	the	number	of	fields	mapped.	In	our
performance	tests	for	"average"	mapping	scenarios,	the	class	mapping	times	vary	from	1/8	of	a	millisecond	to	2
milliseconds.	This	roughly	equates	to	50	-	450	field	mappings	per	millisecond.	However,	the	number	of	variables	in
any	decent	benchmark	makes	it	almost	impossible	to	transfer	these	results	into	reasonable	conclusions	about	the
performance	of	your	own	application.	Your	application	is	different	and	you	will	have	unique	use	cases.

Dozer	has	been	successfully	implemented	on	large,	very	high	transactional	enterprise	systems,	without	any	resulting
performance	issues.	But	we	always	recommend	that	you	run	performance	tests	on	your	application	to	determine	the
actual	performance	costs	within	your	system.	You	can	decide	for	yourself	whether	those	costs	are	acceptable	in	the
context	of	the	entire	system.

Which	JDK	versions	are	supported?

JDK	1.8	and	above.

Is	Dozer	in	the	maven	repository?

Yes	and	we	will	continue	to	do	our	best	to	get	future	releases	of	Dozer	uploaded	into	the	repository.

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-core</artifactId>
				<version>{dozer-version}</version>
</dependency>

Is	Dozer	good	for	the	environment?

Yes,	dozer	does	not	burn	any	fossil	fuels	and	is	within	the	EPA’s	recommended	emissions.

Can	I	implement	custom	mapping	logic	between	2	data	types	and	have	Dozer
invoke	this	custom	logic	when	it’s	performing	mappings?

Yes.	A	very	useful	feature	provided	by	Dozer	is	the	concept	of	custom	converters.	Custom	converters	are	used	to
perform	custom	mapping	between	two	objects.	In	the	Configuration	block,	you	can	add	some	XML	to	tell	Dozer	to	use
a	custom	converter	for	certain	class	A	and	class	B	types.	When	a	custom	converter	is	specified	for	a	class	A	and
class	B	combination,	Dozer	will	invoke	the	custom	converter	to	perform	the	data	mapping	instead	of	the	standard
mapping	logic.

<custom-converters>
				<converter	type="com.github.dozermapper.core.converters.SomeCustomConverter">
								<class-a>com.github.dozermapper.core.vo.SomeCustomDoubleObject</class-a>
								<class-b>java.lang.Double</class-b>
				</converter>
</custom-converters>

Can	I	map	one	field	into	another	field	that	is	nested	n	layers	deep	in	the
destination	object?

Yes.	Dozer	supports	dot	notation	for	nested	fields.	As	with	other	dozer	field	mappings,	these	are	bi-directional.

FAQ

76

<field>
				<a>someNestedObj.someOtherNestedObj.someField
				someOtherField
</field>

How	do	I	map	multiple	fields	to	a	single	field?

Dozer	doesn’t	currently	support	this.	And	because	of	the	complexities	around	implementing	it,	this	feature	is	not
currently	on	the	road	map.	A	possible	solution	would	be	to	wrap	the	multiple	fields	in	a	custom	complex	type	and	then
define	a	custom	converter	for	mapping	between	the	complex	type	and	the	single	field.	This	way,	you	could	handle	the
custom	logic	required	to	map	the	three	fields	into	the	single	one	within	the	custom	converter.

If	I	am	mapping	data	objects	that	contain	bi-directional	relationships,	will	it
result	in	an	infinite	loop	and	eventual	stack	overflow	error?

No.	Dozer	has	built	in	logic	that	prevents	infinite	loops	for	bi-directional	data	object	relationships

How	do	I	map	an	object	contained	in	a	collection	to	a	field?

You	would	use	indexed	based	mapping.

<field>
				<a>usernames[0]
				username1
</field>

How	do	I	map	a	Complex	object	to	a	HashMap	and	vice	versa?

You	can	map	entire	complex	objects	directly	to	a	java.util.Map	and	vice	versa.	When	doing	this	you	need	to	explicitly
define	a	unique	map-id	for	the	mapping.	This	is	used	when	determining	which	map	to	use	at	run-time.	Every	attribute
on	the	complex	type	will	be	mapped	to	the	java.util.Map.	You	DO	NOT	need	to	explicitly	define	these	mappings.	If	the
attribute	name	is	not	the	same	as	the	map	key	just	set	the	key	attribute	for	a	custom	field	mapping.

<mapping	map-id="myTestMapping">
				<class-a>com.github.dozermapper.core.vo.map.SomeComplexType</class-a>
				<class-b>java.util.Map</class-b>
				<field>
								<a>stringProperty2
								<b	key="myStringProperty">this
				</field>
</mapping>

How	do	I	map	fields	that	don’t	have	corresponding	getter/setter	methods?

You	can	tell	Dozer	to	directly	access	fields(including	private	fields)	by	specifying	is-accessible="true"

<field>
				<a>fieldA
				<b	is-accessible="true">fieldB
</field>

Some	of	my	data	objects	don’t	have	public	constructors.	Does	Dozer	support
this	use	case?

FAQ

77

Yes.	When	creating	a	new	instance	of	the	destination	object	if	a	public	no-arg	constructor	is	not	found,	Dozer	will	auto
detect	a	private	constructor	and	use	that.	If	the	data	object	does	not	have	a	private	constructor,	you	can	specify	a
custom	BeanFactory	for	creating	new	instances	of	the	destination	object.

Does	Dozer	support	JDK	1.5	enums?

Yes.	Enum	to	Enum	mapping	is	automatically	handled.

Does	Dozer	support	JAXB	generated	data	objects?

Dozer	has	support	for	mapping	POJOs	to	JAXB	objects.	Use	the	JAXBBeanFactory	for	any	JAXB	objects	you	want
created.

Is	there	an	Eclipse	plugin	or	visual	editor	for	Dozer?

No,	but	we	think	it	would	be	a	great	addition.	It	would	be	very	powerful	to	be	able	to	graphically	map	2	objects	and
have	the	custom	xml	definitions	auto	generated,	along	with	being	able	to	visually	view	a	mapping	definition.	If	anyone
has	expertise	in	creating	eclipse	plugins	and	is	interested	on	working	on	this	feature,	please	let	us	know!

When	mapping	collections,	how	do	I	tell	Dozer	what	type	of	data	objects	I
want	in	the	destination	collection?

Hints	are	supported	to	handle	this	use	case.	Hints	are	not	required	if	you	are	using	JDK	1.5	Generics	because	the
types	can	be	auto	detected	by	Dozer.	But	if	you	are	not	using	generics,	to	convert	a	Collection/Array	to	a
Collection/Array	with	different	type	objects	you	can	specify	a	Hint	to	let	Dozer	know	what	type	of	objects	you	want
created	in	the	destination	list.	If	a	Hint	is	not	specified	for	the	destination	field,	then	the	destination	Collection	will	be
populated	with	objects	that	are	the	same	type	as	the	elements	in	the	src	Collection.

<field>
				<a>someList
				otherList
				<b-hint>com.github.dozermapper.core.vo.TheFirstSubClassPrime</b-hint>
</field>

How	can	I	tell	Dozer	to	bypass	mapping	null	or	empty	string	values?

You	can	bypass	the	mapping	of	null	values	by	specifying	map-null="false".	If	this	is	specified,	the	dest	field	mapping	is
bypassed	at	runtime	and	the	destination	value	setter	method	will	not	be	called	if	the	src	value	is	null.	This	can	be
specified	at	the	mapping	or	class	level.

You	can	bypass	the	mapping	of	empty	String	values	by	specifying	map-empty-string="false".	If	this	is	specified,	the
dest	field	mapping	is	bypassed	at	runtime	and	the	destination	value	setter	method	will	not	be	called	if	the	src	value	is
an	empty	String.	This	can	be	specified	at	the	mapping	or	class	level

Should	I	encapsulate	logic	that	copies	data	between	objects?

It	is	our	opinion	that	you	should.	Regardless	of	whether	you	use	Dozer	to	perform	data	mapping	between	objects,	we
believe	this	is	a	good	design	pattern	that	promotes	reuse,	encapsulates	the	underlying	implementation,	and	makes
the	code	unit	testable	in	isolation.	These	"Assembler"	interfaces	encapsulate	the	logic	that	is	responsible	for	taking	a
src	object	and	mapping	the	data	into	a	dest	object.	Using	assembler	type	of	classes	gives	you	the	flexibility	of	being
able	to	modify	the	underlying	mapping	implementation	without	impacting	clients	or	the	contract.	One	other	important
benefit	of	using	Assemblers	is	that	it	makes	writing	unit	tests	specific	for	the	mapping	a	lot	easier	and	more	focused.	If
you	ever	need	to	determine	if	a	particular	bug	is	due	to	mapping	of	objects,	it	is	simple	to	write	an	Assembler	unit	test

FAQ

78

that	reproduces	the	use	case.	If	you	encapsulate	your	data	mapping	logic,	you	could	use	Dozer	for	most	of	mappings
and	if	you	have	a	real	corner	case,	you	have	the	flexibility	to	hand	code	mappings	for	any	objects	or	fields.	For
example,	you	could	run	your	mapping	through	Dozer	to	map	99%	of	your	fields	and	then	have	a	manual	mapping	for
some	odd	ball	field.	This	would	happen	all	within	the	Assembler	without	the	client	having	any	knowledge	of	the
underlying	implementation.

It	seems	to	work	best	if	these	assembler	type	of	classes	are	"dumb"	and	are	only	responsible	for	simply	copying	data
from	the	source	object	into	the	destination	object.	Any	complex	postprocessing	business	logic	that	needs	to	be
performed	on	the	destination	object	can	be	done	at	a	higher	level	in	classses	that	have	more	responsibility.

The	following	is	a	simple	example	of	an	assembler	type	class	that	uses	Dozer	for	its	underlying	implementation.

public	class	SomeAssemblerImpl	implements	SomeAssembler	{

		private	Mapper	dozerMapper;

		public	DestObject	assembleDestObject(SrcObject	src)	{
				return	dozerMapper.map(src,	DestObject.class);
		}

}

Should	I	write	unit	tests	for	data	mapping	logic	that	I	use	Dozer	to	perform?

Absolutely.	And	of	course,	we	strongly	recommend	writing	the	unit	test(s)	first.	Even	if	you	don’t	use	Dozer	to	perform
the	data	mapping	between	two	objects,	this	logic	still	needs	isolated	unit	tests.	Data	mapping	logic(especially	hand
coded)	is	error	prone	and	having	a	unit	test	is	invaluable.	Typically	mapping	between	two	objects	is	required	in
multiple	areas	of	a	system,	so	a	focused	unit	test	of	the	central	mapping	logic	enables	you	to	test	the	data	mapping
logic	in	isolation.	The	great	thing	about	encapsulating	data	mapping	logic	and	having	unit	tests	for	the	logic	is	that	you
can	easily	switch	out	the	underlying	implementation.

For	existing	systems	that	are	wanting	to	migrate	to	Dozer,	we	recommend	first	encapsulating	any	existing	hand	coded
data	mapping	into	an	assembler	type	of	class	and	write	unit	tests	for	it.	Then	switch	out	the	hand	coded	mapping	logic
with	Dozer	and	the	unit	tests	will	be	your	safety	net.	The	migration	to	Dozer	can	be	incremental	and	this	is	probably
the	best	strategy	for	exisiting	systems.

Regardless	of	whether	or	not	you	use	Dozer,	unit	testing	data	mapping	logic	is	tedious	and	a	necessary	evil,	but	there
is	a	trick	that	may	help.	If	you	have	an	assembler	that	supports	mapping	2	objects	bi-directionally,	in	your	unit	test	you
can	do	something	similar	to	the	following	example.	This	also	assumes	you	have	done	a	good	job	of	implementing	the
equals()	method	for	your	data	objects.	The	idea	is	that	if	you	map	a	source	object	to	a	destination	object	and	then
back	again,	the	original	src	object	should	equal	the	object	returned	from	the	last	mapping	if	fields	were	mapped
correctly.	In	the	test	case,	you	should	populate	all	the	possible	fields	in	the	original	source	object	to	ensure	that	all	of
the	fields	are	accounted	for	in	the	mapping	logic.

public	void	testAssembleSomeObject()	throws	Exception	{
		SrcObject	src	=	new	SrcObject();
		src.setSomeField("somevalue");
		src.setSomeOtherField("make	sure	you	set	all	the	src	fields	"
				+	"with	values	so	that	you	fully	test	the	data	mappings");

		DestObject	dest	=	assembler.assembleDestObject(src);
		SrcObject	mappedSrc	=	assermbler.assembleSrcObject(dest);

		assertEquals("fields	not	mapped	correctly",	src,	mappedSrc);
}

FAQ

79

It	is	also	good	practice	to	verify	that	your	assembler	handles	null	values	properly.	In	the	following	test	case	none	of	the
source	fields	are	populated.	If	the	assembler	doesn’t	properly	handle	null	values,	an	exception	will	be	thrown	when	the
assembler	is	invoked.

public	void	testAssembleSomeObject_NullValues()	throws	Exception	{
		SrcObject	src	=	new	SrcObject();

		DestObject	dest	=	assembler.assembleDestObject(src);
		SrcObject	mappedSrc	=	assermbler.assembleSrcObject(dest);

		assertEquals("fields	not	mapped	correctly",	src,	mappedSrc);
}

Should	the	Dozer	mapper	be	configured	as	a	Singleton?

Yes.		Mapper		instances	should	be	reused	as	much	as	possible.	For	every	instance	of	the		Mapper	,	the	mapping	files
are	loaded	and	parsed.	You	should	configure	the		Mapper		once	for	your	configuration	and	reuse	this	instance
throughout	your	application.	The		Mapper		implementations	are	thread	safe.

Is	it	better	to	have	1	large	xml	mapping	file	or	to	have	multiple	smaller
mapping	files?

We	recommend	componentizing	your	mapping	files	instead	of	having	1	large	mapping	file.

What	are	the	best	ways	to	debug	Dozer?

You	can	specify	the	-Ddozer.debug	system	property	to	view	the	one	time	initialization	information.	You	will	see	output
similar	to	the	following…​.

dozer:	Trying	to	find	Dozer	configuration	file:	dozer.properties
dozer:	Using	URL	[file:/local/subversion_projects/dozer/trunk/target/test-classes/dozer.properties]	for	Dozerglobal	proper
ty	configuration
dozer:	Reading	Dozer	properties	from	URL[file:/local/subversion_projects/dozer/trunk/target/test-classes/dozer.properties]
dozer:	Finished	configuring	Dozer	global	properties
dozer:	Initializing	Dozer.	Version:	${project.version},	Thread	Name:main
dozer:	Initializing	a	new	instance	of	the	dozer	bean	mapper.
dozer:	Using	the	following	xml	files	to	load	custom	mappings	for	the	bean	mapper	instance:[fieldAttributeMapping.xml]
dozer:	Trying	to	find	xml	mapping	file:	fieldAttributeMapping.xml
dozer:	Using	URL	[file:/local/subversion_projects/dozer/trunk/target/test-classes/fieldAttributeMapping.xml]to	load	custom
	xml	mappings
dozer:	Successfully	loaded	custom	xml	mappings	from	URL:[file:/local/subversion_projects/dozer/trunk/target/test-classes/f
ieldAttributeMapping.xml]

To	debug	individual	field	mappings	between	classes,	set	the	logging	level
"com.github.dozermapper.core.MappingProcessor=DEBUG".	For	example,	if	you	are	using	log4j	you	would	add	the
following	entry	to	your	log4j	configuration	file
"log4j.category.com.github.dozermapper.core.MappingProcessor=DEBUG".	This	will	show	you	every	field	mapping
that	Dozer	performs	along	with	the	actual	source	and	destination	values.	You	will	see	output	similar	to	the	following…​.

MAPPED:	SimpleObj.field1	-->	SimpleObjPrime.field1	VALUES:
one	-->	one	MAPID:	someMapId
MAPPED:	SimpleObj.field2	-->	SimpleObjPrime.field2	VALUES:
2	-->	2	MAPID:	someMapId
MAPPED:	SimpleObj.field3	-->	SimpleObjPrime.field3	VALUES:
3	-->	3	MAPID:	someMapId
MAPPED:	SimpleObj.field4	-->	SimpleObjPrime.field4	VALUES:
44.44	-->	44.44	MAPID:	someMapId
MAPPED:	SimpleObj.field6	-->	SimpleObjPrime.field6	VALUES:

FAQ

80

66	-->	66	MAPID:	someMapId

What	is	the	best	way	to	setup	the	global	configuration?

We	recommend	having	a	separate	mapping	xml	file	for	global	configuration.	You	could	name	it	something	similar	to
dozer-global-configuration.xml.	Sample	global	configuration	file…​…​

<?xml	version="1.0"	encoding="UTF-8"?>
<mappings	xmlns="http://dozermapper.github.io/schema/bean-mapping"
										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
										xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping	http://dozermapper.github.io/schema/bean-ma
pping.xsd">
				<configuration>
								<stop-on-errors>true</stop-on-errors>
								<date-format>MM/dd/yyyy	HH:mm</date-format>
								<wildcard>false</wildcard>
								<custom-converters>
												<converter	type="com.github.dozermapper.core.converters.TestCustomConverter">
																<class-a>com.github.dozermapper.core.vo.CustomDoubleObject</class-a>
																<class-b>java.lang.Double</class-b>
												</converter>
								</custom-converters>
				</configuration>
</mappings>

What	is	the	best	way	to	submit	a	bug,	feature	request,	or	patch?

We	value	your	suggestions	and	appreciate	everyone	that	takes	the	time	to	submit	a	support	request.	Please	submit	all
requests	via	Dozer’s	GitHub	project	page

FAQ

81

https://github.com/DozerMapper/dozer

Examples
There	are	some	sample	mapping	files	under	\{dozer.home}/src/test/resources.	These	mapping	files	are	used	by	the
Dozer	unit	tests.

Examples

82

Migration	from	v5.5.1	to	v6.0.0
See	for	release	notes.

1.	JDK	<1.8	support	dropped

Dozer	is	built	against	Java	JDK	1.8	ONLY.

2.	Maven	GAV	(Group	ID,	Artifact	and	Version)	has	changed:

From:

<dependency>
				<groupId>net.sf.dozer</groupId>
				<artifactId>dozer</artifactId>
				<version>5.5.1</version>
</dependency>

To:

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-core</artifactId>
				<version>6.0.0</version>
</dependency>

3.	dozer-osgi	dropped

You	no	longer	need	to	use	the	below,	if	you	are	running	in	an	OSGi	environment:

<dependency>
				<groupId>net.sf.dozer</groupId>
				<artifactId>dozer-osgi</artifactId>
				<version>5.5.1</version>
</dependency>

Just	simply	use	the	dozer-core:

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-core</artifactId>
				<version>6.0.0</version>
</dependency>

v5	to	v6

83

https://github.com/DozerMapper/dozer/releases/tag/v6.0.0

Migration	from	v6.0.0	to	v6.1.0
See	for	release	notes.

1.	Mapping.xml	XSD	changed:

From:

<mappings	xmlns="http://dozer.sourceforge.net"
										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
										xsi:schemaLocation="http://dozer.sourceforge.net	http://dozer.sourceforge.net/schema/beanmapping.xsd">

To:

<mappings	xmlns="http://dozermapper.github.io/schema/bean-mapping"
										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
										xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping	https://dozermapper.github.io/schema/bean-m
apping.xsd">

2.	Dozer-Spring	XSD	changed.

From:

	<beans	xmlns="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:dozer="http://dozer.sourceforge.net/schema/dozer-spring"
								xsi:schemaLocation="
											http://www.springframework.org/schema/beans	http://www.springframework.org/schema/beans/spring-beans-4.3.xsd
											http://dozer.sourceforge.net/schema/dozer-spring	http://dozer.sourceforge.net/schema/dozer-spring.xsd">

To:

	<beans	xmlns="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:dozer="http://dozermapper.github.io/schema/dozer-spring"
								xsi:schemaLocation="
											http://www.springframework.org/schema/beans	http://www.springframework.org/schema/beans/spring-beans-4.3.xsd
											http://dozermapper.github.io/schema/dozer-spring	https://dozermapper.github.io/schema/dozer-spring.xsd">

3.	DozerBeanMapper	usage	is	deprecated

Direct	instantiation	of		DozerBeanMapper		as	well	as	its	usage	is	deprecated.	This	class	will	be	hidden	in	version	6.2.
Please	use		Mapper		whenever	you	need	to	map,	and		DozerBeanMapperBuilder		to	configure	the	mapper.

Deprecated:

DozerBeanMapper	mapper	=	new	DozerBeanMapper();
mapper.addMapping(myMappingBuilder);
mapper.setMappingFiles(myFiles);

mapper.map(a,	b);

Recommended:

v6.0.0	to	v6.1.0

84

https://github.com/DozerMapper/dozer/releases/tag/6.1.0

Mapper	mapper	=	DozerBeanMapperBuilder.create()
								.withMappingBuilder(myMappingBuilder)
								.withMappingFiles(myFiles)
								.build();

mapper.map(a,	b);

4.	Dozer	Bean	Mapper	Singleton	Wrapper	is	deprecated

	DozerBeanMapperSingletonWrapper		is	deprecated	and	planned	for	removal	in	version	6.2.

Dozer	project	does	not	advise	to	use	JVM	singletons.	Please	use	your	DI	container	to	manage	single	instance	of	the
	Mapper		if	required.	The	following	code	can	be	used	to	create	a		Mapper		with	default	configuration:

Mapper	mapper	=	DozerBeanMapperBuilder.buildDefault();

5.	Internal	API	is	changed

Dozer	is	moving	away	from	having	JVM-global	state.	This	means	that	some	internal	API	like		BeanContainer		is	not
available	anymore	via	singleton	references,	i.e.		BeanContainer.getInstance()		does	not	exist.	If	you	were	using	this	or
any	other	code	that	is	reworked,	please	let	us	know.	Most	likely	you	developed		DozerModule	.	We	would	like	to	know
more	about	real-world	use	cases	to	build	convenient	public	API	for	modules	developers.

6.	org.dozer.BeanFactory	interface	changes

Old	signature	of		org.dozer.BeanFactory		is	deprecated	and	will	be	removed	in	version	6.2.	Please	use	new	method	of
this	interface	when	creating	custom	bean	factories.

Deprecated:

Object	createBean(Object	source,	Class<?>	sourceClass,	String	targetBeanId)

Recommended:

Object	createBean(Object	source,	Class<?>	sourceClass,	String	targetBeanId,	BeanContainer	beanContainer)

7.	Deprecated	stats	and	jmx

Deprecated:

org.dozer.stats
org.dozer.jmx

8.	Updated	dozer-proto	package	name

From:

org.dozer

To:

com.github.dozermapper.protobuf

v6.0.0	to	v6.1.0

85

9.	Updated	dozer-spring	package	name

From:

org.dozer.spring

To:

com.github.dozermapper.spring

v6.0.0	to	v6.1.0

86

Migration	from	v6.1.0	to	v6.2.0
See	for	release	notes.

1.	JMX/Stats	has	been	removed

As	per	6.1.0	migration	docs,	JMX	and	Stats	were	deprecated.	They	have	now	been	fully	removed.

2.	dozer.properties	keys	changed

From:

				dozer.cache.converter.by.dest.type.maxsize
				dozer.cache.super.type.maxsize
				org.dozer.util.DozerClassLoader
				org.dozer.util.DozerProxyResolver

To:

				dozer.cache.converter-by-dest-type-maxsize
				dozer.cache.super-type-maxsize
				dozer.beans.class-loader-bean
				dozer.beans.proxy-resolver-bean

3.	Support	for	YAML,	SystemProperties	and	Environment	variables

As	as	well	as	dozer.properties,	we	also	support	several	new	implementations,	such	as	YAML,	see:	-
https://github.com/DozerMapper/dozer/tree/6.2.0/core/src/main/java/org/dozer/config/resolvers	-
https://github.com/DozerMapper/dozer/tree/6.2.0/core/src/main/java/org/dozer/config/processors

4.	dozer.el.enabled	is	deprecated

The	property	for	'dozer.el.enabled'	has	been	deprecated.	Instead,	you	should	use:

				DefaultELEngine	elEngine	=	new	DefaultELEngine();
				Mapper	mapper	=	DozerBeanMapperBuilder.create()
												.withMappingFiles(mappingFiles)
												.withElementReader(new	ExpressionElementReader(elEngine))
												.withELEngine(elEngine)
												.build();

5.	Spring	maven	artifact	name	has	changed

From:

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-spring</artifactId>
				<version>6.1.0</version>
</dependency>

To:

v6.1.0	to	v6.2.0

87

https://github.com/DozerMapper/dozer/releases/tag/6.2.0
https://github.com/DozerMapper/dozer/tree/6.2.0/core/src/main/java/org/dozer/config/resolvers
https://github.com/DozerMapper/dozer/tree/6.2.0/core/src/main/java/org/dozer/config/processors

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-spring4</artifactId>
				<version>6.2.0</version>
</dependency>

6.	Spring	maven	artifact	name	has	changed

From:

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-proto</artifactId>
				<version>6.1.0</version>
</dependency>

To:

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-proto3</artifactId>
				<version>6.2.0</version>
</dependency>

7.	Extended	spring	boot	support

	dozer-spring-boot-starter		and		dozer-spring-boot-autoconfigure		artifacts	added	to	support	spring	boot	auto	configuration
features.

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-spring-boot-starter</artifactId>
				<version>6.2.0</version>
</dependency>

8.	dozer.xml.use-jaxb-mapping-engine	to	use	new	JAXB

The	current	Dozer	XML	to	Objects	implementation	uses	org.w3c.dom.Document	to	parse	the	model.	Going	forward,
the	intention	is	to	use	a	JAXB	model.	This	feature	is	not	enabled	by	default,	but	can	be	via:

				dozer.xml.use-jaxb-mapping-engine=true

v6.1.0	to	v6.2.0

88

Migration	from	v6.2.0	to	v6.3.0
See	for	release	notes.

1.	Karaf2	support	dropped

As	karaf2	is	now	deprecated	upstream,	and	is	not	supported	with	Java9,	support	is	dropped.

2.	Apache	XMLBeans	support	dropped

As	xmlbeans	is	now	deprecated	upstream,	and	is	not	supported	with	Java9,	support	is	dropped.

3.	UberJAR	now	provided

Maven	GAV

<dependency>
				<groupId>com.github.dozermapper</groupId>
				<artifactId>dozer-core</artifactId>
				<version>6.3.0</version>
				<classifier>jar-with-dependencies</classifier>
</dependency>

4.	dozer.xml.use-jaxb-mapping-engine	enabled	by	default

JAXB	is	used	by	default,	if	this	causes	issues,	it	can	be	disabled	via:

				-Ddozer.xml.use-jaxb-mapping-engine=false

And	the	following	is	deprecated:

				com.github.dozermapper.core.loader.xml

In	favour	of:

				com.github.dozermapper.core.builder.xml

5.	Updated	dozer-core	package	name

From:

org.dozer

To:

com.github.dozermapper.core

6.	Updated	DozerEventListener	package/class	name

From:

v6.2.0	to	v6.3.0

89

https://github.com/DozerMapper/dozer/releases/tag/6.3.0

org.dozer.DozerEventListener

To:

com.github.dozermapper.core.events.EventListener

v6.2.0	to	v6.3.0

90

Prerequisites
The	Plugin	currently	depends	on

WTP	3.0.2	or	latest

Compatibility

Plugin	is	supported	and	been	tested	on	the	following	IDEs

Eclipse	3.6

RAD	RSA	8.0.1

Installation

The	Dozer	Plugin-feature	can	be	installed	and	updated	using	the	Eclipse	Update	Manager.

Add	a	new	Update-URL:

http://dozer.sourceforge.net/eclipse-plugin

Select	all	required	dependencies	and	install	the	plugin.

Alternatively	you	can	download	the	package	at	sourceforge	and	unzip	it	in	your	eclipse	installation	folder.	You	might
have	to	enable	the	Plugin	after	starting	Eclipse.	This	can	be	done	at	Help	>	Software	Updates	>	Manage
Configuration.

After	installation	is	done	you	should	see	a	little	red	dozer-icon	on	all	your	mapping-xml	files.

Installation

91

http://www.eclipse.org/webtools/
http://www.eclipse.org
http://www.ibm.com/developerworks/rational/library/10/whats-new-in-rational-software-architect-8/
https://sourceforge.net/project/showfiles.php?group_id=133517

Create	new	Mapping	files
The	plugin	provides	a	simple	wizard	for	creating	new	mapping-xml	files.	A	new	mapping-xml	file	can	be	created	using
File	>	New	>	Other	>	Dozer	Mapping	Framework	>	Dozer	Mapping	File.	Select	the	correct	dozer	version	(4,	DTD	or	5,
XSD)	in	the	wizard	and	create	the	file.

Configure	the	Mapping

via	XML

via	the	Editor

Usage

92

Open	mapping	file
When	opening	a	Dozer-mapping-file	the	Dozer-editor	appears.	If	you	want	to	edit	the	raw	XML	you	can	switch	to	the
"source"	view.

Content	Assist

All	the	class-a/class-b,	field,	get-method,	set-method,	etc	-nodes	or	-attributes	automaticly	show	content-assist
popups	when	pressing	ctrl+space	or	the	configured	WTP-XML	content	assist	characters.	These	can	be	changed	in
the	preferences.

via	XML

93

All	the	class-a/class-b,	field,	get-method,	set-method,	etc	-nodes	or	-attributes	automaticly	show	content-assist
popups	when	pressing	ctrl+space	or	the	configured	WTP-XML	content	assist	characters.	These	can	be	changed	in
the	preferences.

via	XML

94

Validation

The	Dozer	Plugin	validates	the	Mapping	to	find	out	if	the	mapped	class	do	exist	and	if	the	mapped	fields	are
accessible.

via	XML

95

Setting	global	dozer	configuration
All	global	configuration	values	can	be	set	in	the	"Global	Configuration"	Tab.	

Configuring	mappings

Every	classmapping	is	listed	in	the	"Mapping"	Tab.	Mappings	of	classes	and	fields	can	be	added	by	Popup	menu	or
the	action-buttons	at	the	top.	On	the	right	side	the	mappings	can	be	configured.	Every	Attribute	or	Element	in	the	XML
file	is	shown	for	editing.

via	Editor

96

	Introduction
	Why Map?
	Getting Started
	Usage

	Mappings via XML
	via Annotations
	via API

	Configuration
	Configuration via XML
	Configuration via API

	Mapping Classes
	Basic Property Mapping
	Inheritance Mapping
	Context Based Mapping
	One-Way Mapping
	Copying By Object Reference
	Deep Property Mapping
	Indexed Property Mapping
	Excluding Fields
	Assembler Pattern
	Mapping immutable types
	Enums
	String to Date
	Collections and Arrays
	Map Backed Property Mapping
	Proxy Objects
	Custom Converters
	Custom Bean Factories
	Custom Create Methods
	Custom get() set() Methods
	Expression Language
	Logging
	Event Listening
	Metadata Query Interface
	Spring Integration
	Spring Boot Integration
	JAXB
	FAQ
	Examples
	v5 to v6
	v6.0.0 to v6.1.0
	v6.1.0 to v6.2.0
	v6.2.0 to v6.3.0
	Installation
	Usage
	via XML
	via Editor

